下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省臨汾市吳村中學2021-2022學年高一數(shù)學文月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在四邊形ABCD中,若·=-||·||,·=||·||,則該四邊形一定是A.平行四邊形
B.矩形
C.菱形
D.正方形參考答案:A2.當a>1時,在同一坐標系中,函數(shù)的圖象是()
A
B
C
D參考答案:A略3.(3分)已知f(x)=g(x)+2,且g(x)為奇函數(shù),若f(2)=3,則f(﹣2)=() A. 0 B. ﹣3 C. 1 D. 3參考答案:C考點: 函數(shù)的值.專題: 計算題.分析: 由已知可知f(2)=g(2)+2=3,可求g(2),然后把x=﹣2代入f(﹣2)=g(﹣2)+2=﹣g(2)+2可求解答: ∵f(x)=g(x)+2,f(2)=3,∴f(2)=g(2)+2=3∴g(2)=1∵g(x)為奇函數(shù)則f(﹣2)=g(﹣2)+2=﹣g(2)+2=1故選:C點評: 本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的函數(shù)值,屬于基礎試題4.若,則的值是[
]
A.9
B.7
C.5
D.3參考答案:C5.某醫(yī)藥研究所開發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測,服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.據(jù)進一步測定,每毫升血液中含藥量不少于0.25微克時,治療疾病有效,則服藥一次治療該疾病有效的時間為()A.4小時 B. C. D.5小時參考答案:C【考點】函數(shù)模型的選擇與應用.【分析】根據(jù)圖象先求出函數(shù)的解析式,然后我們將函數(shù)值0.25代入函數(shù)解析式,構造不等式f(t)≥0.25,可以求出每毫升血液中含藥量不少于0.25微克的起始時刻和結束時刻,他們之間的差值即為服藥一次治療疾病有效的時間.【解答】解:由題意,當0≤t≤1時,函數(shù)圖象是一個線段,由于過原點與點(1,4),故其解析式為y=4t,0≤t≤1;當t≥1時,函數(shù)的解析式為,此時M(1,4)在曲線上,將此點的坐標代入函數(shù)解析式得,解得a=3故函數(shù)的解析式為,t≥1.所以.令f(t)≥0.25,即,解得,∴.∴服藥一次治療疾病有效的時間為個小時.故選C.6.已知正方體ABCD﹣A1B1C1D1的棱長為2,線段EF在棱A1B1上移動,點P,Q分別在棱AD,CD上移動,若EF=1,PD=x,A1E=y,CQ=z,則三棱錐Q﹣PEF的體積()A.只與x有關B.只與y有關C.只與x,y有關D.只與y,z有關參考答案:A7.是第四象限角,,則等于()A. B.C. D.參考答案:B【詳解】∵α是第四象限角,∴sinα<0.∵,∴sinα=,故選B.8.已知||=1,||=2,與的夾角為60°,=2+3,=k﹣(k∈R),且,那么k的值為(
)A.﹣6B.6C.D.參考答案:D考點:數(shù)量積判斷兩個平面向量的垂直關系;數(shù)量積表示兩個向量的夾角.專題:計算題.分析:根據(jù)兩個向量的垂直關系.寫出兩個向量的數(shù)量積等于0,根據(jù)多項式乘法法則,整理出結果,得到關于k的方程,解方程即可.解答: 解:∵=2+3,=k﹣(k∈R),且⊥,∴(2+3)(k﹣)=0,∴2k+(3k﹣2)﹣3=0,∵||=1,||=2,與的夾角為60°,∴2k+(3k﹣2)﹣12=0∴5k=14∴k=故選D.點評:本題考查向量的垂直關系的充要條件,本題是一個基礎題,題目中包含的向量之間的關系比較復雜,需要認真完成.9.已知函數(shù),則等于A.8
B.9
C.11
D.10參考答案:C10.已知角是第三象限角,且,則(
)A. B. C. D.參考答案:A【分析】根據(jù)同角三角函數(shù)關系式中的商關系,結合,可以求出的值,最后根據(jù)同角的三角函數(shù)關系式和二次根式的性質(zhì)進行求解即可.【詳解】兩邊平方得;,解得或,因為角是第三象限角,所以有,因此,所以.故選:A【點睛】本題考查了同角三角函數(shù)關系式的應用,考查了數(shù)學運算能力.
二、填空題:本大題共7小題,每小題4分,共28分11.將函數(shù)y=cosx的圖象向右移個單位,可以得到y(tǒng)=sin(x+)的圖象.參考答案:【考點】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】y=cosx=sin(+x),其圖象向右平移個單位得到y(tǒng)=sin(x+)的圖象【解答】解:∵y=cosx=sin(+x),其圖象向右平移個單位得到y(tǒng)=sin(x+)的圖象.故答案為:12.在△ABC中,邊a,b,c所對的角分別為A,B,C,若,,則A=______;C=_______.參考答案:30°
90°【分析】先根據(jù)求出A的值,再根據(jù)求出B的值即得C的值.【詳解】由題得,所以.因為,所以,所以C=.故答案為:
【點睛】本題主要考查余弦定理解三角形和三角恒等變換,意在考查學生對這些知識的理解掌握水平和分析推理能力.13.已知定義在R上的奇函數(shù)y=f(x)滿足:①當x∈(0,1]時,f(x)=()x;②f(x)的圖象關于直線x=1對稱,則f(﹣log224)=.參考答案:【考點】函數(shù)奇偶性的性質(zhì).【專題】計算題;函數(shù)思想;綜合法;函數(shù)的性質(zhì)及應用.【分析】由f(x)的圖象關于x=1對稱可以得出f(x)=f(x﹣4),從而可以得到f(﹣log224)=﹣f(log224﹣4)=﹣f(log23﹣1),可判斷l(xiāng)og23﹣1∈(0,1),從而可以求出,這樣根據(jù)指數(shù)式和對數(shù)式的互化及指數(shù)的運算即可求得答案.【解答】解:f(x)的圖象關于x=1對稱;∴f(x)=f(2﹣x)=﹣f(x﹣2)=f(x﹣4);即f(x)=f(x﹣4);∴f(﹣log224)=﹣f(log224)=﹣f(log224﹣4)=﹣f(log23﹣1);∵log23﹣1∈(0,1);∴==;∴.故答案為:.【點評】考查奇函數(shù)的定義,f(x)關于x=a對稱時有f(x)=f(2a﹣x),以及對數(shù)的運算,指數(shù)的運算,對數(shù)式和指數(shù)式的互化.14.若等差數(shù)列{an}中,,則的值為
參考答案:1015.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,則四個側面△PAB,△PBC,△PCD,△PAD中,有
個直角三角形.參考答案:4由PA⊥平面ABCD可得△PAB,△PAD是直角三角形,由PA⊥平面ABCD,,結合底面ABCD是矩形,可得CD⊥平面PAD,BC⊥平面PAB,由此可得△PBC,△PCD是直角三角形,所以四個三角形均為直角三角形,故答案為4.
16.數(shù)列{xn}滿足,則________.參考答案:【分析】根據(jù)題意可求得和的等式相加,求得,進而推出,判斷出數(shù)列是以6為周期的數(shù)列,進而根據(jù)求出答案?!驹斀狻繉⒁陨蟽墒较嗉拥脭?shù)列是以6為周期的數(shù)列,故【點睛】對于遞推式的使用,我們可以嘗試讓取或,又得一個遞推式,將兩個遞推式相加或者相減來找規(guī)律,本題是一道中等難度題目。17.若角的終邊經(jīng)過點,則的值為 ;參考答案:點,,
三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.在平面直角坐標系中,O為坐標原點,點A,B,C滿足.(1)求的值;(2)已知,,,若函數(shù)的最大值為3,求實數(shù)m的值.參考答案:(1)2;(2).【分析】(1)化簡得,即得的值;(2)先求出,再換元利用二次函數(shù)的圖像和性質(zhì)求實數(shù)的值.【詳解】(1)由題意知,,即,所以,即.(2)易知,,,則,,所以,令,則,,其對稱軸方程是.當時,的最大值為,解得;當時,的最大值為,解得(舍去).綜上可知,實數(shù)的值為.【點睛】本題主要考查向量的線性運算和平面向量的數(shù)量積,考查二次函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的理解掌握水平和分析推理能力.19.已知等差數(shù)列{an}的前四項的和A4=60,第二項與第四項的和為34,等比數(shù)列{bn}的前四項的和B4=120,第二項與第四項的和為90.(1)求數(shù)列{an},{bn}的通項公式;(2)設cn=an·bn,且{cn}的前n項和為Sn,求Sn.參考答案:
解:(1)由題意知,對數(shù)列{an},?∴①-②可得:2d=8.∴d=4,a1=9.∴an=4n+5(n∈N+).由題意知,對數(shù)列{bn},∴④÷③可得q=3,則b1=3,∴bn=3×3n-1=3n(n∈N+).-----------6分(2)由cn=an·bn=(4n+5)·3n,∴Sn=9·3+13·32+17·33+…+(4n+5)·3n.兩邊同乘以3,得3Sn=9·32+13·33+17·34+…+(4n+1)·3n+(4n+5)·3n+1.兩式相減,得-2Sn=9·3+4·32+4·33+…+4·3n-(4n+5)·3n+1=27+4·-(4n+5)·3n+1=27+2·3n+1-18-(4n+5)·3n+1,∴Sn=[(4n+3)·3n+1-9].-------------12分
略20.已知在中,所對邊分別為,且(1)求大??;(2)若求的面積S的大?。畢⒖即鸢福?1)
(2)略21.(本題滿分12分)在數(shù)列{an}中,,,設.(1)證明:數(shù)列{bn}是等差數(shù)列;(2)求數(shù)列{an}的通項公式;(3)求數(shù)列{an}的前n項和.參考答案:(1)因為,所以,數(shù)列是等差數(shù)列;(2)由(1)可知,數(shù)列是首項為,公差為的等差數(shù)列,則,由可知,;(3)由得:...........①...........②①—②得:所以,
22.(本小題12分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生日蛋糕定制與航空旅行禮品合作合同2篇
- 《脊柱區(qū)局部解剖學》課件
- 2025年湖北貨運上崗證模擬考試題
- 2024年水路貨物運輸節(jié)能減排管理細則合同3篇
- 2025年太原貨運從業(yè)資格考試模擬考試題目及答案
- 2024年度土地租賃與農(nóng)產(chǎn)品加工廠建設項目合同3篇
- 2024年版魚池養(yǎng)殖經(jīng)營承包合同范本一
- 2024年塔吊司機安全作業(yè)指導書與責任劃分合同3篇
- 2024年物業(yè)管理服務全面合同8篇
- 2024年標準鐵精粉采購與銷售協(xié)議模板版
- 科技園區(qū)項目商業(yè)計劃書
- 網(wǎng)貸逾期異地管轄權異議申請范本
- 上海市浦東新區(qū)2024屆數(shù)學高一上期末統(tǒng)考試題含解析
- 23J916-1:住宅排氣道(一)
- 小學語文二年級上冊第八單元說教材
- 教育學原理課后答案主編項賢明
- 幼兒園故事課件:《畫龍點睛》
- 資產(chǎn)評估常用數(shù)據(jù)與參數(shù)手冊
- 體育場館租賃合同與體育場館運營合作協(xié)議
- 正高級會計師答辯面試資料
- 脊柱四肢及肛門直腸檢查
評論
0/150
提交評論