2021-2022學(xué)年浙江省溫州九校高考數(shù)學(xué)三模試卷含解析_第1頁
2021-2022學(xué)年浙江省溫州九校高考數(shù)學(xué)三模試卷含解析_第2頁
2021-2022學(xué)年浙江省溫州九校高考數(shù)學(xué)三模試卷含解析_第3頁
2021-2022學(xué)年浙江省溫州九校高考數(shù)學(xué)三模試卷含解析_第4頁
2021-2022學(xué)年浙江省溫州九校高考數(shù)學(xué)三模試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余13頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數(shù)為()A.5 B.10 C.20 D.302.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.3.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直4.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.5.若復(fù)數(shù)滿足,則()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當(dāng)球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6428.設(shè),則(

)A.10 B.11 C.12 D.139.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.10.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.211.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.12.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.8二、填空題:本題共4小題,每小題5分,共20分。13.過點,且圓心在直線上的圓的半徑為__________.14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.曲線在處的切線的斜率為________.16.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當(dāng)PA最長時,則______________;四棱錐P-ABCD的體積為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標(biāo)系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點,且,求r的值.18.(12分)已知拋物線的頂點為原點,其焦點關(guān)于直線的對稱點為,且.若點為的準(zhǔn)線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.19.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點,直線與曲線交于兩點,求的值.20.(12分)在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.21.(12分)已知函數(shù)(1)當(dāng)時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.22.(10分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.2.B【解析】

分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.3.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系4.B【解析】

根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當(dāng)時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.5.B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復(fù)數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.6.B【解析】

利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運算求解能力,屬于中等題.7.A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c8.B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.9.B【解析】

先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.10.D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題.11.A【解析】

令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.12.B【解析】

利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)弦的垂直平分線經(jīng)過圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標(biāo).由兩點間距離公式,即可得半徑.【詳解】因為圓經(jīng)過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標(biāo)為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關(guān)系,直線與直線交點的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.14.充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.15.【解析】

求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.16.90°【解析】

易得平面PAD,P點在與BA垂直的圓面內(nèi)運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內(nèi)運動,易知,當(dāng)P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關(guān)的問題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】

先將曲線C和直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,可得曲線C:()的直角坐標(biāo)方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標(biāo)方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標(biāo)方程化為直角坐標(biāo)方程,是基礎(chǔ)題.18.(1)(2)見解析,最小值為4【解析】

(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設(shè)點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標(biāo)都滿足方程.即直線恒過拋物線焦點當(dāng)時,此時,可知:當(dāng),此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.19.(1)直線普通方程:,曲線直角坐標(biāo)方程:;(2).【解析】

(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標(biāo)方程化為,根據(jù)極坐標(biāo)和直角坐標(biāo)互化原則可得其直角坐標(biāo)方程;(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義可知,利用韋達定理求得結(jié)果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標(biāo)方程可化為:則曲線的直角坐標(biāo)方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,整理可得:設(shè)兩點對應(yīng)的參數(shù)分別為:,則,【點睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用;求解距離之和的關(guān)鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達定理來進行求解.20.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標(biāo)方程兩邊同時乘以,利用可得曲線C的直角坐標(biāo)方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標(biāo)方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關(guān)鍵是正確使用這一轉(zhuǎn)化公式,還考查了直線與圓的位置關(guān)系等知識.21.(1);(2)【解析】

(1)當(dāng)時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時,由,可得,令,則只需,當(dāng)時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論