2022-2023學年山東省青島43中重點中學中考數(shù)學押題卷含解析_第1頁
2022-2023學年山東省青島43中重點中學中考數(shù)學押題卷含解析_第2頁
2022-2023學年山東省青島43中重點中學中考數(shù)學押題卷含解析_第3頁
2022-2023學年山東省青島43中重點中學中考數(shù)學押題卷含解析_第4頁
2022-2023學年山東省青島43中重點中學中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.2.在同一平面內(nèi),下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經(jīng)過直線外一點有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,其中正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個3.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.504.若a+|a|=0,則等于()A.2﹣2a B.2a﹣2 C.﹣2 D.25.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.6.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x27.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°8.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.19.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大?。渲袝S點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤10.在2018年新年賀詞中說道:“安得廣廈千萬間,大庇天下寒士俱歡顏!2017年我國3400000貧困人口實現(xiàn)易地扶貧搬遷、有了溫暖的新家.”其中3400000用科學記數(shù)法表示為()A.0.34×107 B.3.4×106 C.3.4×105 D.34×105二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=___________°.12.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)13.分解因式:x3-9x14.一個n邊形的內(nèi)角和為1080°,則n=________.15.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.16.如圖是由大小完全相同的正六邊形組成的圖形,小軍準備用紅色、黃色、藍色隨機給每個正六邊形分別涂上其中的一種顏色,則上方的正六邊形涂紅色的概率是_______.17.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1).求一次函數(shù)與反比例函數(shù)的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.19.(5分)小明遇到這樣一個問題:已知:.求證:.經(jīng)過思考,小明的證明過程如下:∵,∴.∴.接下來,小明想:若把帶入一元二次方程(a0),恰好得到.這說明一元二次方程有根,且一個根是.所以,根據(jù)一元二次方程根的判別式的知識易證:.根據(jù)上面的解題經(jīng)驗,小明模仿上面的題目自己編了一道類似的題目:已知:.求證:.請你參考上面的方法,寫出小明所編題目的證明過程.20.(8分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.21.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.22.(10分)為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學生約有多少人?23.(12分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數(shù).24.(14分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).2、C【解析】

根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內(nèi),經(jīng)過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【點睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.3、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關(guān)鍵點:分清黑白區(qū)域面積關(guān)系.4、A【解析】

直接利用二次根式的性質(zhì)化簡得出答案.【詳解】∵a+|a|=0,∴|a|=-a,則a≤0,故原式=2-a-a=2-2a.故選A.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確化簡二次根式是解題關(guān)鍵.5、D【解析】

根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.6、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.7、C【解析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質(zhì).8、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,及一元二次方程的解,熟記根與系數(shù)關(guān)系的公式.9、B【解析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線10、B【解析】

解:3400000=.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,

∴∠A=∠C=1°,

∵AB的垂直平分線DE交AC于點D,

∴AD=BD,

∴∠ABD=∠A=1°;

故答案是1.12、>【解析】

根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關(guān)鍵.13、x【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x214、1【解析】

直接根據(jù)內(nèi)角和公式計算即可求解.【詳解】(n﹣2)?110°=1010°,解得n=1.故答案為1.【點睛】主要考查了多邊形的內(nèi)角和公式.多邊形內(nèi)角和公式:.15、【解析】

先由根與系數(shù)的關(guān)系得:兩根和與兩根積,再將m2+n2進行變形,化成和或積的形式,代入即可.【詳解】由根與系數(shù)的關(guān)系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為:.【點睛】本題考查了利用根與系數(shù)的關(guān)系求代數(shù)式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進行變形;如、x12+x22等等,本題是常考題型,利用完全平方公式進行轉(zhuǎn)化.16、【解析】試題分析:上方的正六邊形涂紅色的概率是,故答案為.考點:概率公式.17、5.【解析】

試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.三、解答題(共7小題,滿分69分)18、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據(jù)坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.19、證明見解析【解析】解:∵,∴.∴.∴是一元二次方程的根.∴,∴.20、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關(guān)系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質(zhì)得出EM=EF,在△BME中,由三角形的三邊關(guān)系得出BE+BM>EM即可得出結(jié)論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結(jié)論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關(guān)系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長FD至點M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三邊關(guān)系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延長AB至點N,使BN=DF,連接CN,如圖3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考點:全等三角形的判定和性質(zhì);三角形的三邊關(guān)系定理.21、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質(zhì)得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和相似三角形的判定與性質(zhì).22、(1)B,C;(2)2;(3)該校身高在165≤x<175之間的學生約有462人.【解析】

根據(jù)直方圖即可求得男生的眾數(shù)和中位數(shù),求得男生的總?cè)藬?shù),就是女生的總?cè)藬?shù),然后乘以對應(yīng)的百分比即可求解.【詳解】解:(1)∵直方圖中,B組的人數(shù)為12,最多,∴男生的身高的眾數(shù)在B組,男生總?cè)藬?shù)為:4+12+10+8+6=40,按照從低到高的順序,第20、21兩人都在C組,∴男生的身

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論