版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上有兩個零點(diǎn),則的取值范圍是()A. B. C. D.2.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.3.函數(shù)在內(nèi)有且只有一個零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-24.已知三棱柱()A. B. C. D.5.已知集合,,則等于()A. B. C. D.6.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-37.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.18.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對三個縣區(qū)進(jìn)行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.9.設(shè),其中a,b是實(shí)數(shù),則()A.1 B.2 C. D.10.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.11.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.12.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達(dá)到峰值二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.14.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.15.已知關(guān)于的不等式對于任意恒成立,則實(shí)數(shù)的取值范圍為_________.16.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.18.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.19.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.20.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.21.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點(diǎn)為是曲線上的動點(diǎn),求點(diǎn)的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.2.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.3.A【解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個零點(diǎn),.故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.4.C【解析】因?yàn)橹比庵校珹B=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=5.A【解析】
進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計算能力,屬于基礎(chǔ)題.6.D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.7.B【解析】
由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.8.A【解析】
每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進(jìn)行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.9.D【解析】
根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計算,考驗(yàn)計算,屬基礎(chǔ)題.10.D【解析】
整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實(shí)部為0,虛部不為0,即可求解.【詳解】由題,,因?yàn)榧兲摂?shù),所以,則,故選:D【點(diǎn)睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運(yùn)算.11.B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)椋?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.12.D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達(dá)到峰值,D選項錯誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.11【解析】
根據(jù)復(fù)數(shù)運(yùn)算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.14.20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構(gòu)成公差為的等差數(shù)列,偶數(shù)項構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時,,.當(dāng)時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關(guān)鍵.15.【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因?yàn)椋?,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時等號成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【點(diǎn)睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.16.(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點(diǎn),考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點(diǎn)考查臨界情形:與切于,.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進(jìn)行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時等號成立.故,即.【點(diǎn)睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.18.(1);(2)見解析【解析】
將函數(shù)解析式化簡即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當(dāng),即時,;當(dāng),即時,.綜上,得時,取得最小值為0;當(dāng)時,取得最大值為.【點(diǎn)睛】本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數(shù)的性質(zhì)等,較為綜合,也是??碱}型,需要計算正確,屬于基礎(chǔ)題19.(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)椋?,解得所以點(diǎn),到平面的距離為【點(diǎn)睛】本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來求,屬于中檔題20.(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運(yùn)算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)?,所以平面,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車銷售行為培訓(xùn)課件
- 單梁遙控行車安全培訓(xùn)
- 2.2 大氣受熱過程和大氣運(yùn)動(第2課時 大氣運(yùn)動)(教學(xué)設(shè)計)高一地理同步高效課堂(人教版2019必修一)
- 【課件】有理數(shù)乘法的運(yùn)算律及運(yùn)用(第2課時)課件人教版數(shù)學(xué)七年級上冊
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)課件項目7 Web Farm網(wǎng)絡(luò)負(fù)載平衡
- 土木工程力學(xué)12結(jié)構(gòu)的計算簡圖及分類
- 2024年內(nèi)蒙古赤峰市中考英語試題含解析
- 幼兒園中班寒假安全教育教案18篇
- 牛津譯林版八年級上冊英語課外閱讀拓展訓(xùn)練二(時文無答案)
- 2024年黑龍江省綏化市初中畢業(yè)學(xué)業(yè)考試地理試卷含答案
- 期中試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊
- 2024-2024部編版九年級語文上冊期末考試測試卷(附答案)
- 健康科普宣教課件
- 體適能訓(xùn)練對兒童青少年體質(zhì)影響發(fā)展研究
- 故障模式、影響及危害分析報告(模板)(共14頁)
- 三無急診病人的接診與處理程序
- 冀教版八年級上冊英語課件Lesson 22 I Like My Neighbourhood
- 乙二醇冷卻器設(shè)計-趙守強(qiáng)
- 混凝土圓管涵計算書
- 一年級數(shù)學(xué)《整理房間》聽課心得體會
- 學(xué)校迎接督導(dǎo)評估檢查工作方案[推薦五篇]_1
評論
0/150
提交評論