2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析_第1頁
2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析_第2頁
2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析_第3頁
2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析_第4頁
2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年遼寧省遼陽市縣小屯鎮(zhèn)中學(xué)高一數(shù)學(xué)文月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知定義在實數(shù)R上的函數(shù)y=f(x)不恒為零,同時滿足f(x+y)=f(x)f(y),且當(dāng)x>0時,f(x)>1,那么當(dāng)x<0時,一定有()A.f(x)<-1 B.-1<f(x)<0 C.f(x)>1 D.0<f(x)<1參考答案:D2.已知全集,,,則等于(

)A.

B.

C.

D.參考答案:A3.將函數(shù)f(x)=cos2x的圖象向右平移個單位后得到函數(shù)g(x),則g(x)具有性質(zhì)()A.最大值為1,圖象關(guān)于直線x=對稱B.在上單調(diào)遞增,為奇函數(shù)C.在上單調(diào)遞增,為偶函數(shù)D.周期為π,圖象關(guān)于點對稱參考答案:B依題意,得g(x)=cos=cos=sin2x,故函數(shù)g(x)圖象的對稱軸為x=+(k∈Z),故A錯誤;因為g(-x)=-sin2x=-g(x),故函數(shù)g(x)為奇函數(shù),函數(shù)g(x)在上單調(diào)遞減,在上單調(diào)遞增,故B正確,C錯誤;因為g=sinπ=≠0,故D錯誤.綜上所述,故選B.4.已知函數(shù)f(x)=,則f(-1)的值是(

).A.-2

B.-1

C.0

D.1參考答案:D5.設(shè),與是的子集,若,則稱為一個理想配集。若將與看成不同的“理想配集”,則符合此條件的“理想配集”的個數(shù)是(

(A)4;

(B)8;

(C)9;

(D)16。參考答案:C6.已知函數(shù)f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象() A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向右平移個單位長度 參考答案:A【考點】函數(shù)y=Asin(ωx+φ)的圖象變換. 【分析】由周期函數(shù)的周期計算公式:,算得ω=2.接下來將f(x)的表達(dá)式轉(zhuǎn)化成與g(x)同名的三角函數(shù),再觀察左右平移的長度即可. 【解答】解:由題知ω=2, 所以, 故選擇A. 【點評】本題考點定位:本小題考查誘導(dǎo)公式,函數(shù)圖象的變換,基礎(chǔ)題. 7.已知且,則銳角為(

)(A)

(B)

(C)

(D)參考答案:C略8.設(shè)函數(shù)的最小正周期是T,將其圖象向左平移后,得到的圖象如圖所示,則函數(shù)的單增區(qū)間是(

)A. B.C. D.參考答案:A由已知圖象知,的最小正周期是所以解得.由得到,單增區(qū)間是或:因為所以將的圖象向左平移后,所對應(yīng)的解析式為.由圖象知,所以.由得到,單增區(qū)間是點晴:本題考查的是三角函數(shù)的圖像和性質(zhì).已知函數(shù)的圖象求解析式;(1);(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.確定解析式后,再根據(jù)可得單增區(qū)間是.9.已知f(x)=3x+3﹣x,若f(a)=3,則f(2a)等于()A.3 B.5 C.7 D.9參考答案:C【考點】函數(shù)的值.【分析】根據(jù)指數(shù)冪的運(yùn)算性質(zhì),進(jìn)行平方即可得到結(jié)論.【解答】解:∵f(x)=3x+3﹣x,∴f(a)=3a+3﹣a=3,平方得32a+2+3﹣2a=9,即32a+3﹣2a=7.即f(2a)=32a+3﹣2a=7.故選:C.10.已知點P(3,4),Q(2,6),向量=(﹣1,λ),若?=0,則實數(shù)λ的值為()A. B.﹣ C.2 D.﹣2參考答案:B【考點】平面向量數(shù)量積的運(yùn)算.【專題】計算題;對應(yīng)思想;向量法;平面向量及應(yīng)用.【分析】根據(jù)向量的坐標(biāo)運(yùn)算以及向量的數(shù)量積即可求出.【解答】解:∵P(3,4),Q(2,6),∴=(﹣1,2),∵向量=(﹣1,λ),?=0,∴﹣1×(﹣1)+2λ=0,∴λ=﹣,故選:B.【點評】本題考查了向量的坐標(biāo)運(yùn)算和向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本大題共7小題,每小題4分,共28分11.設(shè),使不等式成立的x的取值范圍為___________.參考答案:【分析】解不等式即可得出實數(shù)的取值范圍.【詳解】解不等式,即,即,解得.因此,使不等式成立的的取值范圍為.故答案為:.【點睛】本題考查一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12.已知函數(shù)y=的單調(diào)遞增區(qū)間為

.參考答案:(﹣∞,﹣1)【考點】復(fù)合函數(shù)的單調(diào)性.【分析】令t=x2﹣1>0,求得函數(shù)的定義域,再由y=,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得結(jié)論.【解答】解:令t=x2﹣1>0,求得x>1,或x<﹣1,故函數(shù)的定義域為{x|x>1,或x<﹣1},且y=,故本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的減區(qū)間為(﹣∞,﹣1),故答案為:(﹣∞,﹣1).13.函數(shù)y=的定義域是

參考答案:略14.函數(shù)y=ax﹣3+1(a>0且a≠1)恒過定點

.參考答案:(3,2)【考點】指數(shù)函數(shù)的單調(diào)性與特殊點.【分析】根據(jù)指數(shù)函數(shù)過定點的性質(zhì)即可確定定點的坐標(biāo).【解答】解:令x﹣3=0,解得x=3,此時y=1+1=2.∴定點坐標(biāo)為(3,2),故答案為:(3,2)15.已知點,向量,且,則點的坐標(biāo)為

。參考答案:略16.若=,=,則在上的投影為________________。參考答案:

解析:17.集合,它們之間的包含關(guān)系是________________.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.計算下列各式:(1)(2ab)(﹣6ab)÷(﹣3ab)(a>0,b>0)(2).參考答案:【考點】對數(shù)的運(yùn)算性質(zhì);有理數(shù)指數(shù)冪的化簡求值.【分析】(1)利用指數(shù)式性質(zhì)、運(yùn)算法則求解.(2)利用對數(shù)性質(zhì)、運(yùn)算法則求解.【解答】解:(1)(2ab)(﹣6ab)÷(﹣3ab)(a>0,b>0)=4=4a.(2)=lg(lg2+lg5)+=lg=1.【點評】本題考查指數(shù)、對數(shù)的化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意指數(shù)式、對數(shù)式性質(zhì)、運(yùn)算法則的合理運(yùn)用.19.如圖所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.(1)若D是BC的中點,求證:AD⊥CC1;(2)過側(cè)面BB1C1C的對角線BC1的平面交側(cè)棱AA1于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C;(3)AM=MA1是截面MBC1⊥側(cè)面BB1C1C的充要條件嗎?請你敘述判斷理由.參考答案:(1)∵AB=AC,D是BC的中點,∴AD⊥BC.∵底面ABC⊥側(cè)面BB1C1C,且交線為BC,∴由面面垂直的性質(zhì)定理可知AD⊥側(cè)面BB1C1C.

又∵CC1?側(cè)面BB1C1C,∴AD⊥CC1.(2)證明:取BC1的中點E,連結(jié)DE、ME.在△BCC1中,D、E分別是BC、BC1的中點,∴DE∥CC1,且DE=CC1,又AA1綊CC1,∴DE∥AA1,且DE=AA1.∵M(jìn)是AA1的中點(由AM=MA1知),∴DE綊AM.∴AMED是平行四邊形,∴AD綊ME.由(1)知AD⊥平面BB1C1C,∴ME⊥側(cè)面BB1C1C,又∵M(jìn)E?面BMC1,∴平面BMC1⊥側(cè)面BB1C1C.(3)是.作MF⊥BC1于F,連FD.若截面MBC1⊥側(cè)面BB1C1C,則MF⊥平面BB1C1C,而AD⊥平面BB1C1C,∴MF∥AD.又AM∥平面BB1C1C,∴AM∥FD,∴FD∥CC1,而D是BC中點,∴F也是BC1的中點,∴AM=DF=CC1=AA1,即AM=MA1.又由(2)可知AM=MA1是截面MBC1⊥側(cè)面BB1C1C的充要條件.20.函數(shù)是定義在上的奇函數(shù),且.

(1)求實數(shù),并確定函數(shù)的解析式;

(2)用定義證明在上是增函數(shù);

(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值.(本小問不需說明理由)參考答案:解:(1)∵f(x)是奇函數(shù)∴f(-x)=f(x),既∴b=0∵∴a=1∴(2)任取

∵∴∴,

∴f(x)在(-1,1)上是增函數(shù)(3)單調(diào)減區(qū)間,,

當(dāng)x=-1時有最小值

當(dāng)x=1時有最大值略21.(本小題14分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為1.⑴求此二次函數(shù)的解析式;⑵若函數(shù)的定義域為=.(其中).問是否存在這樣的兩個實數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請說明理由.參考答案:綜上:存在滿足條件的,其中。

略22.已知函數(shù)(a>0且a≠1)(1)f(x)的定義域;(2)判斷f(x)的奇偶性并證明.參考答案:【考點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論