四川省綿陽市三臺外國語校2023年中考適應性考試數(shù)學試題含解析及點睛_第1頁
四川省綿陽市三臺外國語校2023年中考適應性考試數(shù)學試題含解析及點睛_第2頁
四川省綿陽市三臺外國語校2023年中考適應性考試數(shù)學試題含解析及點睛_第3頁
四川省綿陽市三臺外國語校2023年中考適應性考試數(shù)學試題含解析及點睛_第4頁
四川省綿陽市三臺外國語校2023年中考適應性考試數(shù)學試題含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算,結果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a22.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.34.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.5.如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.26.要使分式有意義,則x的取值應滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.8.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°9.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結論錯誤的是()A.AE=6cm B.C.當0<t≤10時, D.當t=12s時,△PBQ是等腰三角形10.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)二、填空題(共7小題,每小題3分,滿分21分)11.分式方程的解為__________.12.分解因式:x2–4x+4=__________.13.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.14.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉時,點F的運動軌跡是_________圖形15.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數(shù)根,則a的取值范圍為________.16.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯(lián)結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.17.如圖,在等邊△ABC中,AB=4,D是BC的中點,將△ABD繞點A旋轉后得到△ACE,連接DE交AC于點F,則△AEF的面積為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.19.(5分)計算:4cos30°﹣+20180+|1﹣|20.(8分)某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).21.(10分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.22.(10分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.23.(12分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.24.(14分)如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,AB=BD,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(n,).(1)求m、n的值和反比例函數(shù)的表達式.(2)將矩形OABC的一角折疊,使點O與點D重合,折痕分別與x軸,y軸正半軸交于點F,G,求線段FG的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【點睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關鍵是正確掌握計算法則.2、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.3、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質(zhì)及圖象可得出點B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結論.

解:設△OAC和△BAD的直角邊長分別為a、b,

則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,

∴(a+b)×(a﹣b)=a2﹣b2=1.

∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.

故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關鍵.4、B【解析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.5、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質(zhì),掌握平行四邊形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征是解題的關鍵.6、D【解析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應滿足:x≠﹣1.故選D.考點:分式有意義的條件.7、A【解析】

畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.8、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關鍵.9、D【解析】(1)結論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結論D錯誤,理由如下:當t=12s時,點Q與點C重合,點P運動到ED的中點,設為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.10、A【解析】

首先根據(jù)各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】【分析】先去分母,化為整式方程,然后再進行檢驗即可得.【詳解】兩邊同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案為:-1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.12、(x–1)1【解析】試題分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考點:分解因式.13、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.14、圓【解析】

根據(jù)題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據(jù)題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關鍵是根據(jù)題意作出相應的圖形,方可判斷.15、a≤且a≠1.【解析】

根據(jù)一元二次方程有實數(shù)根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據(jù)題意列出關于a的不等式組是解答此題的關鍵.16、【解析】

設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長等于AB=.故答案為.17、【解析】

首先,利用等邊三角形的性質(zhì)求得AD=2;然后根據(jù)旋轉的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點,∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據(jù)旋轉的性質(zhì)知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點睛】本題考查了旋轉的性質(zhì),等邊三角形的判定與性質(zhì),熟記各性質(zhì)并求出△ADE是等邊三角形是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質(zhì)、銳角三角函數(shù)、勾股定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,正確尋找相似三角形,構建方程解決問題嗎,屬于中考壓軸題.19、【解析】

先代入三角函數(shù)值、化簡二次根式、計算零指數(shù)冪、取絕對值符號,再計算乘法,最后計算加減可得.【詳解】原式===【點睛】本題主要考查實數(shù)的混合運算,解題的關鍵是熟練掌握實數(shù)的混合運算順序和運算法則及零指數(shù)冪、絕對值和二次根式的性質(zhì).20、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】

(1)根據(jù)“騎電動車”上下的人數(shù)除以所占的百分比,即可得到調(diào)查學生數(shù);用調(diào)查學生數(shù)乘以選擇類的人數(shù)所占的百分比,即可求出選擇類的人數(shù).

(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數(shù);由總學生數(shù)求出選擇公共交通的人數(shù),補全統(tǒng)計圖即可;

(3)由總人數(shù)乘以“綠色出行”的百分比,即可得到結果.【詳解】(1)參與本次問卷調(diào)查的學生共有:(人);選擇類的人數(shù)有:故答案為450、63;(2)類所占的百分比為:類對應的扇形圓心角的度數(shù)為:選擇類的人數(shù)為:(人).補全條形統(tǒng)計圖為:(3)估計該校每天“綠色出行”的學生人數(shù)為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結論;

(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得

②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為22、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解析】

(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結合圖像可求得答案.(3)把x=3代入y2函數(shù),可得y=;把x=3代入y1函數(shù),可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【點睛】本題考察了一次函數(shù)和雙曲線例函數(shù)的綜合;熟練掌握由點求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論