版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第二章流體靜力學§2—0流體靜力學定義
§2—1流體靜壓強特性§2—2流體平衡微分方程——歐拉平衡微分方程§2—3流體靜力學基本方程第二章流體靜力學§2—4液體的相對平衡§2—5作用在平面上的液體總壓力§2—6作用在曲面上的液體總壓力
§2—7浮力和潛體及浮體的穩(wěn)定§2—0流體靜力學
§2—0流體靜力學
1、流體靜力學(hydrostatics//fluidstatics):
研究流體處于靜止(包括相對靜止)狀態(tài)下的力學平衡規(guī)律及其在工程申的應用。
2、靜止狀態(tài)(staticcharacteristic):
指流體質(zhì)點之間不存在相對運動。
3、流體靜壓強(staticpressureoffluid//hydrostaticpressure):
靜止流體中的壓應力。
靜止流體中不會有切應力,亦不會產(chǎn)生拉應力,而只有壓應力。
動壓強(dynamicpressureoffluid):
運動流體中的壓應力。
流體靜力學主要研究靜止流體處于力學平衡的一般條件和流體中的壓強分布規(guī)律。
§2—1流體靜壓強特性
§2一1流體靜壓強特性
一、流體靜壓強具有特性1
流體靜壓強既然是一個壓應力,它的方向必然總是沿著作用面的內(nèi)法線方向,即垂直于作用面,并指向作用面(actingsurface)。
證明:
在靜止液體內(nèi)任取一分界面N-N,如圖所示:
設想作用于該面上某點壓強p的方向為任意方向,該壓強p可分解為垂直分量pn和切向分量τ。顯然,在pn和τ作用下,液體將失去平衡而流動,這與靜止液體的假設相違背。只有當τ
=0,才不會使液體流動而保持靜止或平衡狀態(tài)。
ApnpNN'Bp二、流體靜壓強特性2§2一1流體靜壓強特性
靜止流體中任一點上流體靜壓強的大小與其作用面的方位無關,即同一點上各方向的靜壓強大小均相等。
證明:
取一包含點M在內(nèi)的微小四面體:
根據(jù)平衡條件,四面體處于靜止狀態(tài)下,各坐標軸方向的作用力之和均分別為零。
由:
現(xiàn)以x軸方向為例:§2一1流體靜壓強特性
當dx、dy、dz趨近于零,縮到M時
各式代入:
各式代入:
說明:靜止流體中任一點上壓強的大小與通過此點的作用面的方位無關,只是該點坐標的連續(xù)函數(shù)。即
所以:
同理:在y軸、z軸方向分別可得
----------(2-1)
----------(2-2)
§2—2流體平衡微分方程—歐拉平衡微分方程
§2一2流體平衡微分方程——歐拉平衡微分方程2-2-1流體的平衡微分方程—歐拉平衡微分方程
1、用微元分析法推導流體的平衡微分方程:
設點M的坐標為x、y、z,壓強為p。
和
表面力為:
質(zhì)量力為:
利用泰勒級數(shù),ABCD和EFGH中心點處的壓強分別為:
x軸方向受力分析:P(x,y,z)MAEFBDHGCdzdydxyxzo§2一2流體平衡微分方程——歐拉平衡微分方程
化簡移項后得
和
上面三個式的矢量形式為:
上式為流體的平衡微分方程式,又稱歐拉平衡微分方程(Eular’sequationofequilibriumfluid)。
同理:
因為微小六面體處于平衡狀態(tài),所以作用力在x軸方向的分量之和應等于零
----------(2-4)
----(2-3)
P(x,y,z)MAEFBDHGCdzdydxyxzo§2一2流體平衡微分方程——歐拉平衡微分方程
它表明了處于平衡狀態(tài)的流體中壓強的變化率(壓強梯度pressuregradient)與單位質(zhì)量力之間的關系,即對于單位質(zhì)量的流體來講,質(zhì)量力分量和表面力分量是對應相等的。
2、歐拉平衡微分方程的物理意義2-2-2流體平衡微分方程的積分
§2一2流體平衡微分方程——歐拉平衡微分方程
將方程組(2-3)中的各式依次乘以dx、dy、dz,并將它們相加,得
右邊也必須是某一個坐標函數(shù)W(x,y,z)的全微分,
其中:
W是力函數(shù)或勢函數(shù)(potentialfunction),它對各坐標的偏導數(shù)分別等于力場的力在對應坐標軸上的分量。質(zhì)量力則是有勢力(potentialforce)。
左邊為壓強p的全微分dp:
-----------(2-5)
-----------(2-6)
將式(2-6)代人式(2-5)得
可壓縮流體的平衡微分方程形式:
-----------(2-8)
-----------(2-7)
對于不可壓縮均質(zhì)流體來講,其密度ρ為常數(shù),積分上式得,§2一2流體平衡微分方程——歐拉平衡微分方程
已知邊界條件,勢函數(shù)為W0和壓強為p0,則得C=p0-ρW0。
p=p0+ρ(W-W0)-----------(2-9)
上式為不可壓縮均質(zhì)流體平衡微分方程積分后的普遍關系式。它表明不可壓縮均質(zhì)流體要維持平衡,只有在有勢的質(zhì)量力作用下才有可能;任一點上的壓強等于外壓強p0與有勢的質(zhì)量力所產(chǎn)生的壓強之和。
2-2-3等壓面·帕斯卡定律
§2一2流體平衡微分方程——歐拉平衡微分方程
1、等壓面(EquipressureSurface)
:流體中壓強相等的點所組成的面。p=常數(shù)
(1)等壓面就是等勢面(Equipotential
linee)。
2、等壓面的方程:
3、等壓面特點:則dp=0
因為即-----------(2-10)
dp=0又dp=ρdW=0
因為則W=常數(shù)
(2)等壓面和質(zhì)量力正交。
因為
則等壓面上移動距離ds與質(zhì)量力f正交。
4、只有重力作用下的等壓面應滿足的條件:§2一2流體平衡微分方程——歐拉平衡微分方程
1)、靜止;
2)、連通;
3)、連通的介質(zhì)為同一均質(zhì)流體;
4)、質(zhì)量力僅有重力;
5)、同一水平面。BB'p0A+12CC§2一2流體平衡微分方程——歐拉平衡微分方程靜水壓強實驗裝置圖
1、測壓管;2、帶標尺測壓管;3、連通管;4、真空測壓管;5、U型測壓管;
6、通氣閥;7、加壓打氣球;8、截止閥;9、油柱;10、水柱;11、減壓放水閥。
5、帕斯卡定律(Pascal’sLaw):§2一2流體平衡微分方程——歐拉平衡微分方程
在平衡的不可壓縮均質(zhì)流體中,由于部分邊界面上的外力作用而產(chǎn)生的壓強將均勻地傳遞到該流體的各點上。
由
若p0有所增減
流體中各點的壓強p也隨之有同樣大小的數(shù)值變化
例:§2一2流體平衡微分方程——歐拉平衡微分方程
水壓機是由兩個尺寸不同而彼此連通的圓筒以及置于筒內(nèi)的一對活塞所組成的,筒內(nèi)充滿著水或油。已知大小活塞的面積分別為ω1
、ω2
。若忽略兩活塞的重量及其與圓臺摩阻的影響,當小活塞加力p1時,求活塞所產(chǎn)生的力p2
。
解:
在作用下小活塞上產(chǎn)生流體靜壓強為
按帕斯卡定律,p1
將不變地傳遞到ω2上,所以§2一2流體平衡微分方程——歐拉平衡微分方程思考題
1、什么是等壓面?等壓面的條件是什么?它適用于哪種流體?
3、判斷是不是等壓面?
2、相對平衡的流體的等壓面是否為水平面?為什么?什么條件下的等壓面是水平面?zo相對平衡的流體存在慣性力?!?一3流體靜力學基本方程
§2一3流體靜力學基本方程2-3-1重力作用下的流體平衡方程
靜止重力流體:所受的質(zhì)量力只有重力的靜止流體。
單位質(zhì)量流體上的質(zhì)量力在各坐標軸方向的分量。
得
對于不可壓縮均質(zhì)流體,ρ=常數(shù),積分得:
代入:
-----------(2-11)
-----------(2-12)
對于靜止流體中任意兩點來講,上式可寫為
或:
-----------(2-14)
-----------(2-13)
§2一3流體靜力學基本方程
上述兩式為流體靜力學基本方程,又稱水靜力學基本方程。
式中:z1、z2分別為任意兩點在z軸上的鉛垂坐標值,基準面選定了,其值亦就定了;p1、p2分別為上述兩點的靜壓強;h為上述兩點間的鉛垂向下深度。p2/ooZ1Z2p1/(1)(2)h
或:
-----------(2-14)
-----------(2-13)
自由表面上為大氣壓強p0的液體,水靜力學基本方程為§2一3流體靜力學基本方程
說明:
1)靜止流體中某一點的靜水壓強隨深度按線性(linearity)規(guī)律增加。
2)靜止流體中某一點的靜水壓強等于表面壓強加上流體的容重與該點淹沒深度的乘積。后一部分即為單位面積上淹沒深度液柱的重量。-----------(2-15)
2-3-2壓強的計量單位和表示方法
§2一3流體靜力學基本方程一、常用三種壓強計量單位
1、壓強的基本定義:用單位面積上的力來表示,單位為Pa。
2、大氣壓(atmosphericpressure):的倍數(shù)來表示,有兩種大氣壓單位:
標準大氣壓(standardatmosphericpressure):溫度為0℃、緯度為45°時海平面上的壓強,用atm表示。相當于760mm水銀柱對柱底部所產(chǎn)生的壓強,即1個標準大氣壓(atm)=101.3kPa=1.033kgf/cm2
。
工程大氣壓(engineeringatmosphericpressure):海拔200m處的正常大氣壓。相當于736mm水銀柱對柱底部所產(chǎn)生的壓強,即1個工程大氣壓(at)=98kPa=1kgf/cm2
。
3、液柱高度來表示,常用水柱高度或水銀柱高度來表示,其單位為mH2O或mmHg。二、從不同的基準算起,兩種不同的計量壓強的方法?!?一3流體靜力學基本方程
1、絕對壓強(AbsolutePressure):以絕對真空作為壓強的零點,這樣計量的壓強值。以p’表示。
絕對壓強值與相對壓強值之間關系。-----------(2-16)
3、相對壓強的正值稱為正壓(positivepressure)(即壓力表讀數(shù)),負值稱為負壓(negativepressure)。絕對壓強值小于大氣壓強時,流體中就出現(xiàn)真空(Vacuum)。
真空壓強(VacuumPressure)是指流體中某點的絕對壓強小于大氣壓強的部分。
如果自由表面的壓強p0=pa,則相對壓強值為。-----------(2-17)
2、相對壓強(RelativePressure):以當?shù)卮髿鈮簭?localatmosphericpressure)
pa作為零點起算的壓強值。以p表示。-----------(2-18)
用液柱高度來表示真空壓強的大小,即真空度(VacuumPressure)
。
-----------(2-19)
真空壓強的演示§2一3流體靜力學基本方程
絕對壓強值、相對壓強值、真空度之間關系§2一3流體靜力學基本方程oo絕對壓強基準o'o'相對壓強基準p1’p1壓強pp2’pa1at=98KN/m2注意:計算時無特殊說明時均采用相對壓強計算。
例
求淡水自由表面下2m深處的靜水壓強和相對壓強(認為自由表面的絕對壓強為1工程大氣壓)
§2一3流體靜力學基本方程解:絕對壓強:相對壓強:
例
設如圖所示,h=2m時,求封閉容器A中的真空值。
§2一3流體靜力學基本方程解:設封閉容器內(nèi)的絕對壓強為pahs,
真空值為P
。
則:pabs=pa-h
根據(jù)真空值定義:
p=pa-pabs=pa-(pa-h)=h=9800×2=19.6Kpa
pahAB水空氣(略)2-3-3流體靜力學基本方程的物理意義和幾何意義
§2一3流體靜力學基本方程一、流體靜力學基本方程的物理意義(physicalproperty)
2、:單位重量流體所具有的壓能(pressurepotentialenergy),稱單位壓能。
1、:單位重量流體從某一基準面算起所具有的位能(elevationpotentialenergy),因為是對單位重量而言,所以稱單位位能
。
z
4、流體靜力學基本方程的物理意義是:在靜止流體中任一點的單位位能與單位壓能之和,亦即單位勢能為常數(shù)。
ooZp—h(1)(2)
3、:單位重量流體所具有的勢能(potentialenergy),稱單位勢能。二、流體靜力學基本方程的幾何意義(geometicproperty)§2一3流體靜力學基本方程
流體靜力學基本方程中的各項,從量綱來看都是長度,可用幾何高度來表示它的意義。在水力學中則常用水頭來表示一個高度。
2、:流體從所在點到水面所具有的高度,稱壓強水頭(pressurehead)
。
1、:流體從基準面算起從到所在點的高度,稱位置水頭(elevationhead)
。
z
4、流體靜力學基本方程的幾何意義是:在靜止液體中任一點的位置水頭與壓強水頭之和,亦即測壓管水頭Hp為常數(shù)。
3、壓強水頭與位置水頭之和,稱測壓管水頭(piezometrichead)。。oo
Zp—h(1)(2)流體靜力學基本方程的幾何意義§2一3流體靜力學基本方程
2、在均質(zhì)(=常數(shù))、連通的液體中,水平面(=常數(shù))必然是等壓面(=常數(shù))。
1、僅受重力作用處于靜止狀態(tài)的流體中,任意點對同一基準面的單位勢能為一常數(shù),即各點測壓管水頭相等,位頭增高,壓頭減低。2-3-4靜壓強分布圖
§2一3流體靜力學基本方程
1、靜壓強分布圖(diagramofpressuredistribution):表示出各點靜壓強大小和方向的圖。
2、靜壓強分布圖繪制:
在液體中取任意鉛直面AB,并設縱坐標為h,橫坐標為p,
1)由式p=h計算壓強值,選好比例尺,用線段長度表示壓強大小;
2)以帶箭頭的線段垂直指向受壓面,以表示壓強的方向;
3)以直線或曲線連接箭的尾端,畫成完整的靜水壓強分布圖。h
h§2一3流體靜力學基本方程靜壓強分布圖繪制:
2—3—5測壓計
(manometer)
/壓強表(pressuregage)§2一3流體靜力學基本方程
1.測壓管:
根據(jù)流體靜力學基本方程
測壓管(PiezometricTube):是以液柱高度為表征測量點壓強的連通管。
適用范圍:測壓管適用于測量較小的壓強。A
hp0
2.U形管測壓計(U-tubePiezometer):§2一3流體靜力學基本方程
根據(jù)流體靜力學基本方程
絕對壓強和相對壓強值:
適用范圍:用于測定管道或容器中某點流體壓強。
U形管測壓計:一般是一根兩端開口的U形玻璃管,管徑不小于10mm。在管子的彎曲部分盛有與待測流體不相混摻的某種液體,如測量氣體壓強時可盛水或酒精,測量液體壓強時可盛水銀等。
U形管測壓計一端與待測點A處的器壁小孔相接通,另一端與大氣相通。
例2-1設有一盛靜水的密閉容器,如圖2-12所示。由標尺量出水銀真空計左肢內(nèi)
水銀液面距A點的鉛垂高度h1=0.46m,真空計左右兩肢內(nèi)水銀液面高差h2=0.4m。試
求容器內(nèi)液體中點A的真空度hAv。§2一3流體靜力學基本方程解:
2.U形管壓差(differentialpressure)計§2一3流體靜力學基本方程根據(jù)流體靜力學基本方程絕對壓強或相對壓強差值:
壓差計空氣壓差計:用于測中、低壓差油壓差計:用于測很小的壓差水銀壓差計:用于測高壓差
適用范圍:測定液體中兩點的壓強差或測壓管水頭差。
U形管壓差(比壓)計:它一般亦是一根兩端開口的U形玻璃管,在管子的彎曲部分盛有與待測流體不相混摻的某種液體。U形管壓差計的兩端分別與兩待測點A、B處的器壁小孔相接通。
若A、B中流體均為水,3為水銀,h3=h,則§2一3流體靜力學基本方程A+13zAh1h2
h3zBNMho
oz02+B
得到:
例2-2設水銀壓差計與三根有壓水管相連接,如圖2-14所示。已知A、B、C三點的高程相同,壓差汁水銀液面的高程,自左肢向右肢分別為0.21m,1.29m,1.78m。試求A、B、C三點之間的壓強差值。§2一3流體靜力學基本方程解:1-1水平面為等壓面。設壓差計左肢內(nèi)水銀液面距A點的高度為h,則,因此§2一3流體靜力學基本方程思考題
1、若人所能承受的最大壓力為1.274MPa(相對壓強),則潛水員的極限潛水深度
為多少?
2、若測壓管水頭為1m,壓強水頭為1.5m,則測壓管最小長度應該為多少?
3、為什么虹吸管能將水輸送到一定的高度?潛水員的極限潛水深度為oop1/=1.5z測壓管最小長度為1.5m。因為虹吸管內(nèi)出現(xiàn)了真空?!?一3流體靜力學基本方程思考題
1、靜水中某點的絕對壓強為39.2kN/m2。問該點是否存在真空?若存在,則真空高度為多少?
2、基本方程z+p/γ中,壓強p是相對壓強還是絕對壓強?或二者都可?為什么?相對;不可;絕對需加水頭10m,而已互相抵消。
1、在傳統(tǒng)實驗中,為什么常用水銀作U型測壓管的工作流體?
2、測壓管的管徑不應小于1cm,為什么?
壓縮性??;
汽化壓強低;
密度大。避免毛細現(xiàn)象§2-4液體的相對平衡
§2-4液體的相對平衡
一、圓桶以等加速度a=g自由降落
受力分析:
重力:積分得:
慣性力:
說明圓筒內(nèi)各點壓強相同。桶底總壓力為:
合力:
代入:
相對平衡(relativeequilibrium):指各液體質(zhì)點彼此之間及液體與器皿之間無相對運動的運動狀態(tài)。相對平衡液體中,質(zhì)量力除重力外,還受到慣性力的作用。
二、圓筒容器,繞其鉛垂中心軸以等角轉(zhuǎn)速旋轉(zhuǎn)
§2-4液體的相對平衡
1、液體中壓強分布的規(guī)律
原點取在旋轉(zhuǎn)軸與自由表面的交點上,z軸鉛垂向上。
受力分析:
離心慣性力:
重力:
單位質(zhì)量力分量:
合力:
代入:
積分得:§2-4液體的相對平衡
在原點處,x=y=z=0,壓強為p0,所以C=p0。
當以相對壓強計,則為
-----(2-20)
------(2-21)
2、等壓面方程及其形狀
§2-4液體的相對平衡
取p為某一常數(shù),可得等壓面方程
它表明等壓面是一族以z為軸的旋轉(zhuǎn)拋物面,不同的壓強p值有一相應的等壓旋轉(zhuǎn)拋物面(paraboloid)
。
對于自由表面,p=0,自由表面(freesurface)方程為
表示半徑r處的液面高出坐標平面Oxy的鉛垂距離。所以:
是任一點在旋轉(zhuǎn)后自由表面以下的深度。
-------(2-23)
-----(2-22)
所以:
它表明旋轉(zhuǎn)后液體中在鉛垂線上的壓強分布和靜壓強一樣,按直線規(guī)律分布。gAxyrAzoxxyyop0zz0hB
等角轉(zhuǎn)速旋轉(zhuǎn)運動液體的一個顯著特點,就是在同一水平面上軸心處的壓強最低,邊緣處的壓強最高?!?-4液體的相對平衡
注意:在旋轉(zhuǎn)液體中各點的測壓管水頭不等于常數(shù)。
例2-4§2-4液體的相對平衡
試用容器作等角轉(zhuǎn)速旋轉(zhuǎn)時的液體平衡原理來說明離心分離器的分離原理。
當ml=m時,ΔF=0,雜質(zhì)混合在流體中,不能用這個原理來清除。當m1>m時,ΔF向右下方傾斜,雜質(zhì)在ΔF的作用下,下沉于底部。離心除塵器除去空氣中粉塵的。當m1<m時,ΔF向左上方傾斜,雜質(zhì)在ΔF的作用下,上浮于流體表面。油脂分離器回收水中的油脂。
合力:
解:設開敞容器中的液體混有雜質(zhì),ml為某一雜質(zhì)的質(zhì)量,m為與該雜質(zhì)同體積的流體質(zhì)量,容器繞鉛垂軸旋轉(zhuǎn)的等角轉(zhuǎn)速為ω,該雜質(zhì)離旋轉(zhuǎn)軸的距離為r。
受力分析:
鉛垂方向:重力ΔG與浮力ΔFB之差
水平方向:離心慣性力ΔFI與壓力差ΔFp之差
§2-4液體的相對平衡思考題
1、“等壓面必為水平面”,這種說法正確嗎?為什么?否;因為相對平衡的流體存在慣性力
2、在靜止流體中,各點的測壓管水頭是否相等?在流動流體中呢?相等;均勻流、漸變流中相等,急變流中不相等,例如:在旋轉(zhuǎn)液體中各點的測壓管水頭不等于常數(shù)?!?-5作用在平面上的液體總壓力
§2-5作用在平面上的液體總壓力
2-5-1圖解法
靜壓強分布圖的體積:根據(jù)繪制靜壓強分布圖的方法,做出的整個矩形平面上靜壓強分布圖的直角三棱柱體圖。
A’’A’B’’B’ABCC’’C’
流體總壓力(Totalpressure):作用在容器或建筑物上的流體壓力,包括它的大小、方向和作用點。確定靜止流體作用在平面上的總壓力的方法,有圖解法和解析法。
1、液體總壓力Fp的大?。骸?-5作用在平面上的液體總壓力
即為靜壓強分布圖的體積,它等于矩形平面對稱軸AB垂線上靜壓強分布圖ABC的面積Ω與矩形平面頂寬b的相乘積。
-------(2-24)
2、液體總壓力Fp的方向:§2-5作用在平面上的液體總壓力
垂直于矩形平面,并指向平面。液體總壓力的作用線通過靜壓強分布圖體積的重心,或者講通過矩形平面對稱軸AB線上的靜壓強分布圖面積的形心。
3、液體總壓力Fp的作用點:
液體總壓力作用線與矩形平面相交的作用點D稱壓力中心(centerofpressure)。壓力中心D距自由表面的位置:
例2-6:§2-5作用在平面上的液體總壓力
設有一鉛垂放置的水平底邊矩形閘門,如圖2-22所示。已知閘門高度h=2m,寬度b=3m,閘門上緣到自由表面的距離hl=1m。試用圖解法求解作用在閘門上的靜水總壓力。
解:繪制閘門對稱軸AB線上的靜水壓強分布圖ABEF。根據(jù)式(2-24)可得靜水總壓力大小
靜水總壓力Fp的方向垂直于閘門平面,并指向閘門。
bh
壓力中心D距自由表面的位置yD,根據(jù)合力矩定理§2-5作用在平面上的液體總壓力
則
根據(jù)合力矩定理,
,得
2-5-2解析法
§2-5作用在平面上的液體總壓力
1、作用力的大小
微小面積dA上的液體總壓力:
整個受壓平面面積為A上的液體總壓力為:-------(2-25)
作用在任意形狀平面上的液體總壓力大小,等于該平面的淹沒面積與其形心處靜壓強的乘積,而形心處的靜壓強就是整個受壓平面上的平均壓強。hDhchdFFyycyDEF自由液面DCMxyoα
2、液體總壓力Fp的方向:§2-5作用在平面上的液體總壓力
總壓力的方向垂直于平面,并指向平面。
3、液體總壓力Fp的作用點(壓力中心):
根據(jù)合力矩(momentofforce)定理(即:合力對任一軸的力矩等于各分力對該軸力矩之代數(shù)和):-------(2-26,27)
得
式中:Ix—面積A繞ox軸的慣性矩(momentofinertia)。
Ic—面積A繞其與ox軸平行的形心軸的慣性矩。hDhchdFFyycyDEF自由液面DCMxyoα注意:只要平面面積與形心深度不變:§2-5作用在平面上的液體總壓力
1、面積上的總壓力就與平面傾角α無關;
2、壓心的位置與受壓面傾角α無關,并且壓心總是在形心之下。只有當受壓面位置為水平放置時,壓心與形心才重合。h垂直水平傾斜
例2-7:§2-5作用在平面上的液體總壓力
試用解析法求解例2-6所述情況下的作用在閘門上的靜水總壓力Fp
。
解:由式(2-25)知
靜水總壓力Fp的方向垂直于閘門平面,并指向閘門。
壓力中心D距自由表面的位置yD,根據(jù)合力矩定理§2-5作用在平面上的液體總壓力思考題h
2、擋水面積為A的平面閘門,一側(cè)擋水,若饒通過其形心C的水平軸任轉(zhuǎn)角,其靜水總壓力的大小、方向和作用點是否變化?為什么?相同;不相同
1、浸沒在水中的三種形狀的平面物體,面積相同。問:哪個受到的靜水總壓力最大?壓心的水深位置是否相同?大小不變;方向變;作用點變
3、使用圖解法和解析法求靜水總壓力時,對受壓面的形狀各有無限制?為什么?圖解法有,規(guī)則形狀,為作壓強分布圖;解析法無?!?-6作用在曲面上的液體總壓力
§2-6作用在曲面上的液體總壓力
一、水平主軸的二向曲面上的液體總壓力
二向曲面,即具有水平或鉛垂主軸的圓柱形曲面。
M§2-6作用在曲面上的液體總壓力
§2-6作用在曲面上的液體總壓力
一、水平主軸的二向曲面上的液體總壓力
二向曲面,即具有水平或鉛垂主軸的圓柱形曲面。
M
微小面積上的液體總壓力為:
水平分力、鉛垂分力
水平總分力、鉛垂總分力
液體總壓力大?。骸?-6作用在曲面上的液體總壓力
作用在圓柱形曲面上液體總壓力的水平總分力的大小等于該淹沒曲面相應的鉛垂投影面積上所承受的液體總壓力。FPx的方向和作用線,則用前一節(jié)所述的方法即可確定
。
M
作用在圓柱形曲面上液體總壓力的鉛垂總分力的大小等于壓力體體積的液體重量。FPz的作用線通過壓力體的重心(centerofgravity);FPz的方向(向上或向下)取決于液體與曲面表面的相互位置。
壓力體(pressurevolume):以曲面本身與其在自由表面(或自由表面的延續(xù)面)上的投影面積之間的鉛垂柱體A’B’C’A”B”C”幾何體。
它的體積稱壓力體體積V
。F
Px
壓力體:§2-6作用在曲面上的液體總壓力
壓力體的種類:
虛構(gòu)壓力體:壓力體被大氣所充滿,亦就是曲面背向液體,F(xiàn)Pz等于實際上沒有液體存在的壓力體體積的液體重量。虛壓力體Pz方向向上。
實在壓力體:壓力體被液體所充滿。實壓力體Pz方向向下。
壓力體體積的組成:(1)受壓曲面本身;(2)通過曲面周圍邊緣所作的鉛垂面;(3)自由液面或自由液面的延長線。OAB(a)實壓力體Fz(b)虛壓力體BOAFz
液體總壓力FP
:§2-6作用在曲面上的液體總壓力
液體總壓力FP,的作用線與水平方向的夾角α為-------(2-30)
-------(2-31)
FP的作用線必通過FPx和FPz作用線的交點,但這個交點不一定在曲面上。
例2-8:§2-6作用在曲面上的液體總壓力
設有一弧形閘門,如圖2-25所示。已知閘門寬度b=3m,半徑r=2.828m,φ=45。,閘門可繞水平主軸(O軸)轉(zhuǎn)動,O軸距底面高度H=2m。試求閘門前水深h=2m時,作用在閘門上的靜水總壓力。
解:水平總分力FPx為
靜水總壓力FP為
鉛垂總分力FPz為
夾角α為
二、規(guī)則曲面組成的復合或復雜曲面的壓力體:§2-6作用在曲面上的液體總壓力+=+=ABCDEABCDEABCDEABABCDEAB
三、自由表面壓強與當?shù)貕簭姴煌瑫r的壓力體:§2-6作用在曲面上的液體總壓力
當:壓力體的高度為h
。壓力體的頂面為自由表面(或延續(xù)面)。
當:壓力體的高度為,壓力體的頂面在高于自由表面。當:壓力體的高度為,壓力體的頂面在低于自由表面。
例:單寬圓柱即b=1m,問在浮力Pz的作用下能否沒完沒了的轉(zhuǎn)動?§2-6作用在曲面上的液體總壓力
解:不能轉(zhuǎn)動。因為所受總壓力的作用線通過軸心。(作用力總是垂直作用面,所以通過圓心)垂向力作用點到軸心的距離為所以不能轉(zhuǎn)動。逆時針為負pxPzD軸心yDHa§2-6作用在曲面上的液體總壓力思考題
1、如何計算曲面上的靜水總壓力?
2、如何繪制壓力體?壓力體分為哪兩種形式?如何判別?§2-7浮力和潛體及浮體的穩(wěn)定
§2-7浮力和潛體及浮體的穩(wěn)定2-7-1阿基米德原理
浸沒于靜止流體中的潛體(sinkingbody)和漂浮在液面的浮體(floatingbody)所受的流體總壓力,即所謂浮力(buoyancy)問題
。
水平總分力:
1、阿基米德原理:作用在浸沒于流體中物體的流體總壓力FPz,其大小等于該物體所排除的同體積的流體重量,方向向上。
AA'
B'
D
C
B
C'
D'F1
C'
D'F2
鉛垂總分力:
-------(2-31)
浮力:作用在浸沒于流體中物體的方向向上的流體總壓力FPz。
浮心(centerofbuoyancy):浮力的作用點,與所排開液體體積的形心(幾何中心)重合。
作用線(actingline):通過物體的浮心。
2、浸沒物體的三態(tài)§2-7浮力和潛體及浮體的穩(wěn)定
(1)沉體:當G>FB時,物體繼續(xù)下沉;
(2)潛體:當G=FB時,物體可以在流體中任何深度處維持平衡;
(3)浮體:當G<FB時,物體上升,減少浸沒在液體中的物體體積,從而減小浮力;當所受浮力等于物體重力時,則達到平衡的位置。2-7-2潛體及浮體的穩(wěn)定
§2-7浮力和潛體及浮體的穩(wěn)定一、潛體的平衡與穩(wěn)定性
潛體的穩(wěn)定性(stability):潛體在傾斜后恢復其原來平衡位置的能力。
潛體平衡(balance)條件:重力與浮力相等,物體的重心和浮心位于同一鉛垂線上。
潛體的穩(wěn)定平衡條件:重力G與浮力FB大小相等,且重心C在浮心D之下。
2、潛體平衡的三種情況
不穩(wěn)定平衡(instabilitybalance):重心C位于浮心D之上。重力G與浮力FB將產(chǎn)生一個使?jié)擉w繼續(xù)傾斜的轉(zhuǎn)動力矩,潛體不能恢復其原位。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游服務合同寫作指南2篇
- 新亨村廠房租賃合同書年版3篇
- 插畫師聯(lián)名合同范本3篇
- 文藝演出宣傳策劃合同3篇
- 居民供暖合同范本3篇
- 教育培訓租賃合同簽訂指南3篇
- 房屋買賣合同范本填寫3篇
- 新版中年人離婚協(xié)議書范本3篇
- 旅游地質(zhì)勘探服務施工協(xié)議3篇
- 招標文件購買責任表3篇
- 南極磷蝦油100問專業(yè)版
- 小學生家庭作業(yè)布置存在的誤區(qū)及改進策略論文1
- 北師大2019新版高中英語選擇性必修二UNIT 6 THE MEDIA單詞表
- 生物醫(yī)學研究的統(tǒng)計學方法課后習題答案 2014 主編 方積乾
- 100道湊十法練習習題(含答案)
- 加拿大礦業(yè)政策
- 歌曲簡譜國家成龍
- 客情關系的建立和維護
- Smith圓圖的Matlab實現(xiàn)及應用
- 防止機組非計劃停運措施(鍋爐專業(yè))
- 如何同步同時接收老公老婆微信的實用教程
評論
0/150
提交評論