2022屆浙江省湖州二中高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆浙江省湖州二中高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆浙江省湖州二中高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆浙江省湖州二中高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆浙江省湖州二中高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺2.設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,,則()A. B.C. D.3.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動點(diǎn),若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.44.已知,則()A.2 B. C. D.35.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.6.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.若直線的傾斜角為,則的值為()A. B. C. D.8.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.9.若函數(shù)(其中,圖象的一個(gè)對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長度 B.向左平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度10.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或11.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.512.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.14.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.15.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.16.四邊形中,,,,,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)18.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).21.(12分)2019年入冬時(shí)節(jié),長春市民為了迎接2022年北京冬奧會,增強(qiáng)身體素質(zhì),積極開展冰上體育鍛煉.現(xiàn)從速滑項(xiàng)目中隨機(jī)選出100名參與者,并由專業(yè)的評估機(jī)構(gòu)對他們的鍛煉成果進(jìn)行評估打分(滿分為100分)并且認(rèn)為評分不低于80分的參與者擅長冰上運(yùn)動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運(yùn)動進(jìn)行統(tǒng)計(jì),請將下列列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動與性別有關(guān)系?擅長不擅長合計(jì)男性30女性50合計(jì)1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)22.(10分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.2.C【解析】

根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【點(diǎn)睛】本題考查對數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.3.C【解析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.4.A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點(diǎn)睛】本題考查了函數(shù)值的求法,考查對數(shù)的運(yùn)算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.5.D【解析】

由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)椋视?,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.6.A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.7.B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.8.B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無意義,故排除A;又,則,故排除D;對于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.9.B【解析】

由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.10.D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.11.B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.12.C【解析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.14.【解析】

根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.15.6【解析】

已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題16.【解析】

在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域?yàn)?,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域?yàn)?,?當(dāng)時(shí),對任意的,,此時(shí)函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時(shí),令,得.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實(shí)數(shù)的取值范圍是;(2)當(dāng)時(shí),,定義域?yàn)椋?,?dāng)時(shí),;當(dāng)時(shí),.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個(gè)零點(diǎn)、且,,,構(gòu)造函數(shù),其中,,令,,當(dāng)時(shí),,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時(shí)也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于難題.18.(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19.(1);(2)【解析】

(1)分類討論去絕對值號,即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.20.(1),.(2),【解析】

(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡,得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時(shí),在向量的n個(gè)坐標(biāo)中,要使得范數(shù)為奇數(shù),則0的個(gè)數(shù)一定是奇數(shù),所以可按照含0個(gè)數(shù)為:1,3,…,進(jìn)行討論:的n個(gè)坐標(biāo)中含1個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含3個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為1;所以,.因?yàn)?,①,②得,,所?解法1:因?yàn)?,所?.解法2:得,.又因?yàn)?,所?【點(diǎn)睛】本題考查了數(shù)列和組合,是一道較難的綜合題.21.(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動與性別有關(guān)系【解析】

(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論