2022-2023學年江蘇省宜興市宜城環(huán)科園教聯(lián)盟達標名校中考五模數(shù)學試題含解析_第1頁
2022-2023學年江蘇省宜興市宜城環(huán)科園教聯(lián)盟達標名校中考五模數(shù)學試題含解析_第2頁
2022-2023學年江蘇省宜興市宜城環(huán)科園教聯(lián)盟達標名校中考五模數(shù)學試題含解析_第3頁
2022-2023學年江蘇省宜興市宜城環(huán)科園教聯(lián)盟達標名校中考五模數(shù)學試題含解析_第4頁
2022-2023學年江蘇省宜興市宜城環(huán)科園教聯(lián)盟達標名校中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.2.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<103.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.4.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.5.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.7.若△÷,則“△”可能是()A. B. C. D.8.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)9.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨10.2018年1月,“墨子號”量子衛(wèi)星實現(xiàn)了距離達7600千米的洲際量子密鑰分發(fā),這標志著“墨子號”具備了洲際量子保密通信的能力.數(shù)字7600用科學記數(shù)法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×102二、填空題(共7小題,每小題3分,滿分21分)11.已知關于x的方程x2+mx+4=0有兩個相等的實數(shù)根,則實數(shù)m的值是______.12.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉至△A′B′C,使得點A′恰好落在AB上,則旋轉角度為_____.13.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.14.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點B,則k的值為_____.15.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.16.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.17.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結果保留兩位小數(shù))三、解答題(共7小題,滿分69分)18.(10分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?19.(5分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.20.(8分)為了解黔東南州某縣中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.成績分組

組中值

頻數(shù)

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并補全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數(shù)約為多少?21.(10分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?22.(10分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.23.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.24.(14分)計算:()-1+()0+-2cos30°.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉化為一般規(guī)律是解決本題的關鍵.2、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關鍵.3、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.4、D【解析】

連接AC、CF,根據(jù)正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.5、D【解析】

解:設方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.6、B【解析】

連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.7、A【解析】

直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關鍵.8、C【解析】

直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數(shù)形結合思想解題是本題的解題關鍵.9、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.10、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、±4【解析】分析:由方程有兩個相等的實數(shù)根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數(shù)根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.12、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉角為60°.故答案為60°.13、【解析】

連接AC、CF,GE,根據(jù)菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.14、﹣1【解析】

根據(jù)點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數(shù)法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標為﹣3﹣5=﹣8,故B的坐標為:(﹣8,4),將點B的坐標代入y=得,4=,解得:k=﹣1.故答案為:﹣1.15、或2【解析】

由折疊性質可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設出B’F=BF=x,列出比例式方程解方程即可得到結果.【詳解】由折疊性質可知B’F=BF,設B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質,解題關鍵在于能夠對兩個相似三角形進行分類討論.16、-1【解析】

利用反比例函數(shù)的性質,即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內,y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

,

的值可以取等,答案不唯一

故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.17、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關鍵是弄懂BC的長就是⊙O的周長.三、解答題(共7小題,滿分69分)18、(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.【解析】試題分析:(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個數(shù);(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現(xiàn)4種等可能結果,其中抽到的卡片上的數(shù)是勾股數(shù)的結果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.19、(1)且;(2),.【解析】

(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【詳解】(1)∵.解得且.(2)∵為正整數(shù),∴.∴原方程為.解得,.【點睛】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.20、(1)詳見解析(2)2400【解析】

(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總人數(shù)100減去其它各組的人數(shù)就是n的值.(2)利用總人數(shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績優(yōu)秀學生人數(shù)約為:4000×0.6=2400(人)21、(1)6;(2);;(3)10或;【解析】

(1)根據(jù)圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經(jīng)走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數(shù)關系式時,要考慮到時間x的連續(xù)性才能直接列出函數(shù)關系式.22、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】

(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論