2021-2022學(xué)年成都市高新區(qū)草池初中重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析_第1頁
2021-2022學(xué)年成都市高新區(qū)草池初中重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析_第2頁
2021-2022學(xué)年成都市高新區(qū)草池初中重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析_第3頁
2021-2022學(xué)年成都市高新區(qū)草池初中重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析_第4頁
2021-2022學(xué)年成都市高新區(qū)草池初中重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知一元二次方程有一個根為2,則另一根為A.2 B.3 C.4 D.82.從1、2、3、4、5、6這六個數(shù)中隨機(jī)取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.3.如圖是一個正方體的表面展開圖,如果對面上所標(biāo)的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.4.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),以點(diǎn)A為圓心,AD為半徑作弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BF為半徑作弧交BC于點(diǎn)G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.65.如圖1,在矩形ABCD中,動點(diǎn)E從A出發(fā),沿AB→BC方向運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)C時停止運(yùn)動,過點(diǎn)E做FE⊥AE,交CD于F點(diǎn),設(shè)點(diǎn)E運(yùn)動路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)E在BC上運(yùn)動時,F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.6.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm7.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D′處,則點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)8.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-19.將一副三角板按如圖方式擺放,∠1與∠2不一定互補(bǔ)的是()A. B. C. D.10.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°11.下列運(yùn)算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=512.如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,∠1,∠2是四邊形ABCD的兩個外角,且∠1+∠2=210°,則∠A+∠D=____度.14.如圖,利用圖形面積的不同表示方法,能夠得到的代數(shù)恒等式是____________________(寫出一個即可).15.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.16.點(diǎn)G是三角形ABC的重心,,,那么=_____.17.正八邊形的中心角為______度.18.如圖,在⊙O中,直徑AB⊥弦CD,∠A=28°,則∠D=_______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;經(jīng)調(diào)查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?20.(6分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.21.(6分)化簡:(x+7)(x-6)-(x-2)(x+1)22.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當(dāng)△CPE是等腰三角形時,請直接寫出m的值.23.(8分)定安縣定安中學(xué)初中部三名學(xué)生競選校學(xué)生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進(jìn)行統(tǒng)計,如表和圖.ABC筆試859590口試8085(1)請將表和圖中的空缺部分補(bǔ)充完整;圖中B同學(xué)對應(yīng)的扇形圓心角為度;競選的最后一個程序是由初中部的300名學(xué)生進(jìn)行投票,三名候選人的得票情況如圖(沒有棄權(quán)票,每名學(xué)生只能推薦一人),則A同學(xué)得票數(shù)為,B同學(xué)得票數(shù)為,C同學(xué)得票數(shù)為;若每票計1分,學(xué)校將筆試、演講、得票三項(xiàng)得分按4:3:3的比例確定個人成績,請計算三名候選人的最終成績,并根據(jù)成績判斷當(dāng)選.(從A、B、C、選擇一個填空)24.(10分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實(shí)際水平更合理些;去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實(shí)際水平.25.(10分)在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A交AB于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當(dāng)∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.26.(12分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點(diǎn)P,D為第四象限內(nèi)的一點(diǎn),若△CPD為等腰直角三角形,求出D點(diǎn)坐標(biāo).27.(12分)某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點(diǎn):根與系數(shù)的關(guān)系.2、B【解析】考點(diǎn):概率公式.專題:計算題.分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機(jī)取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點(diǎn)評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.3、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點(diǎn)睛】本題主要考查了正方體相對面上的文字,解決本題的關(guān)鍵是要熟練掌握正方體展開圖的特征.4、A【解析】

根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點(diǎn)睛】本題考查扇形面積的計算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.5、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點(diǎn)時,CF有最大值,列出方程式即可解題.【詳解】若點(diǎn)E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點(diǎn)時,CF有最大值,此時,BE=CE=x﹣,即,∴,當(dāng)y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點(diǎn)睛】本題考查了二次函數(shù)頂點(diǎn)問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計算,本題中由圖象得出E為BC中點(diǎn)是解題的關(guān)鍵.6、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.7、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點(diǎn)睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題關(guān)鍵.8、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點(diǎn)睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.9、D【解析】A選項(xiàng):∠1+∠2=360°-90°×2=180°;B選項(xiàng):∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項(xiàng):∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項(xiàng):∠1和∠2不一定互補(bǔ).故選D.點(diǎn)睛:本題主要掌握平行線的性質(zhì)與判定定理,關(guān)鍵在于通過角度之間的轉(zhuǎn)化得出∠1和∠2的互補(bǔ)關(guān)系.10、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點(diǎn)睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.11、B【解析】

利用合并同類項(xiàng)對A進(jìn)行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對B進(jìn)行判斷;根據(jù)同底數(shù)冪的乘法法則對C進(jìn)行判斷;利用完全平方公式對D進(jìn)行判斷.【詳解】解:A、a2與a3不能合并,所以A選項(xiàng)錯誤;B、原式=a6÷a6=1,所以A選項(xiàng)正確;C、原式=a5,所以C選項(xiàng)錯誤;D、原式=2+26+3=5+26,所以D選項(xiàng)錯誤.故選:B.【點(diǎn)睛】本題考查同底數(shù)冪的乘除、二次根式的混合運(yùn)算,:二次根式的混合運(yùn)算先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.解題關(guān)鍵是在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.12、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項(xiàng)①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項(xiàng)②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項(xiàng)③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項(xiàng)④正確,則其中正確的個數(shù)有4個.故選D.【點(diǎn)睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、210.【解析】

利用鄰補(bǔ)角的定義求出∠ABC+∠BCD,再利用四邊形內(nèi)角和定理求得∠A+∠D.【詳解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案為:210.【點(diǎn)睛】本題考查了四邊形的內(nèi)角和定理以及鄰補(bǔ)角的定義,利用鄰補(bǔ)角的定義求出∠ABC+∠BCD是關(guān)鍵.14、(a+b)2=a2+2ab+b2【解析】

完全平方公式的幾何背景,即乘法公式的幾何驗(yàn)證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點(diǎn)睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應(yīng)的面積是解題的關(guān)鍵.15、50°【解析】【分析】直接利用圓周角定理進(jìn)行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.16、.【解析】

根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點(diǎn)G是△ABC的重心,根據(jù)重心的性質(zhì),即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點(diǎn)G是△ABC的重心,∴==﹣,故答案為:﹣.【點(diǎn)睛】本題考查了三角形的重心的性質(zhì):三角形的重心到三角形頂點(diǎn)的距離是它到對邊中點(diǎn)的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎(chǔ)題目.17、45°【解析】

運(yùn)用正n邊形的中心角的計算公式計算即可.【詳解】解:由正n邊形的中心角的計算公式可得其中心角為,故答案為45°.【點(diǎn)睛】本題考查了正n邊形中心角的計算.18、34°【解析】分析:首先根據(jù)垂徑定理得出∠BOD的度數(shù),然后根據(jù)三角形內(nèi)角和定理得出∠D的度數(shù).詳解:∵直徑AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.點(diǎn)睛:本題主要考查的是圓的垂徑定理,屬于基礎(chǔ)題型.求出∠BOD的度數(shù)是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達(dá)到110元,且更有利于減少庫存,則商品應(yīng)降價2.1元.【解析】

(1)設(shè)每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設(shè)每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價y元,由銷售問題的數(shù)量關(guān)系建立方程求出其解即可【詳解】解:(1)設(shè)每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設(shè)每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴y=2.1.答:要使商場每月銷售這種商品的利潤達(dá)到110元,且更有利于減少庫存,則每件商品應(yīng)降價2.1元.【點(diǎn)睛】此題主要考查了一元二次方程的應(yīng)用,關(guān)鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關(guān)系,列出方程,解答即可.20、(1)、(t+6,t);(2)、當(dāng)t=2時,S有最小值是16;(3)、理由見解析.【解析】

(1)如圖所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時,S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.21、2x-40.【解析】

原式利用多項(xiàng)式乘以多項(xiàng)式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.22、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當(dāng)PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.23、(1)90;(2)144度;(3)105,120,75;(4)B【解析】

(1)由條形圖可得A演講得分,由表格可得C筆試得分,據(jù)此補(bǔ)全圖形即可;(2)用360°乘以B對應(yīng)的百分比可得答案;(3)用總?cè)藬?shù)乘以A、B、C三人對應(yīng)的百分比可得答案;(4)根據(jù)加權(quán)平均數(shù)的定義計算可得.【詳解】解:(1)由條形圖知,A演講得分為90分,補(bǔ)全圖形如下:故答案為90;(2)扇圖中B同學(xué)對應(yīng)的扇形圓心角為360°×40%=144°,故答案為144;(3)A同學(xué)得票數(shù)為300×35%=105,B同學(xué)得票數(shù)為300×40%=120,C同學(xué)得票數(shù)為300×25%=75,故答案為105、120、75;(4)A的最終得分為=92.5(分),B的最終得分為=98(分),C的最終得分為=84(分),∴B最終當(dāng)選,故答案為B.【點(diǎn)睛】本題考查的是條形統(tǒng)計圖的綜合運(yùn)用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù).24、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實(shí)際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實(shí)際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實(shí)際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個經(jīng)理的介紹不能反映該公司員工的月工資實(shí)際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實(shí)際水平.25、(1)證明見解析;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質(zhì)得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應(yīng)角相等即可;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進(jìn)行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論