版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.2.設,是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤3.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米4.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,186.已知為虛數(shù)單位,復數(shù),則其共軛復數(shù)()A. B. C. D.7.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.8.已知菱形的邊長為2,,則()A.4 B.6 C. D.9.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調函數(shù),則實數(shù)的取值范圍是()A. B. C. D.10.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據(jù)該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%11.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.412.設函數(shù),則,的大致圖象大致是的()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線(,)過圓:的圓心,則的最小值是______.14.展開式中的系數(shù)的和大于8而小于32,則______.15.已知實數(shù)滿約束條件,則的最大值為___________.16.函數(shù)在內有兩個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若函數(shù)在上單調遞減,且函數(shù)在上單調遞增,求實數(shù)的值;(2)求證:(,且).18.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當四面體的外接球的表面積為時,證明:.平面(2)當四面體的體積最大時,求平面與平面所成銳二面角的余弦值.19.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.20.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)某企業(yè)對設備進行升級改造,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質量指標值,該項質量指標值落在區(qū)間內的產(chǎn)品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數(shù)分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質量指標值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分,質量指標值落在區(qū)間內的定為一等品,每件售價240元;質量指標值落在區(qū)間或內的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.若有一名顧客隨機購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學期望.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.2、A【解析】
利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導,考查數(shù)列性質的應用,考查學生的綜合分析以及計算能力.3、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.4、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.5、A【解析】
利用統(tǒng)計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質的合理運用.6、B【解析】
先根據(jù)復數(shù)的乘法計算出,然后再根據(jù)共軛復數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復數(shù).故選:B.【點睛】本題考查復數(shù)的乘法運算以及共軛復數(shù)的概念,難度較易.7、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.8、B【解析】
根據(jù)菱形中的邊角關系,利用余弦定理和數(shù)量積公式,即可求出結果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應用問題,屬于基礎題..9、B【解析】
求得的導函數(shù),由此構造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.10、D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.11、C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數(shù)的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.12、B【解析】
采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】
求出圓心坐標,代入直線方程得的關系,再由基本不等式求得題中最小值.【詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.14、4【解析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎題目.15、8【解析】
畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.16、【解析】
設,,設,函數(shù)為奇函數(shù),,函數(shù)單調遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設,,則.原函數(shù)等價于函數(shù),即有兩個解.設,則,函數(shù)為奇函數(shù).,函數(shù)單調遞增,,,.當時,易知不成立;當時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的轉化能力和計算能力,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】
(1)分別求得與的導函數(shù),由導函數(shù)與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數(shù)與函數(shù)單調性關系,放縮法在證明不等式中的應用,屬于難題.18、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點,再證明平面平面,進而可得結論;(2)由題意,當點位于點時,四面體的體積最大,再建立空間直角坐標系,利用空間向量運算即可.【詳解】(1)證明:當四面體的外接球的表面積為時.則其外接球的半徑為.因為時邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因為,所以為的中點.記的中點為,連接,.則,,,所以平面平面.因為平面,所以平面.(2)由題意,平面,則三棱錐的高不變.當四面體的體積最大時,的面積最大.所以當點位于點時,四面體的體積最大.以點為坐標原點,建立如圖所示的空間直角坐標系.則,,,,.所以,,,.設平面的法向量為.則令,得.設平面的一個法向量為.則令,得.設平面與平面所成銳二面角是,則.所以當四面體的體積最大時,平面與平面所成銳二面角的余弦值為.【點睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運用平面與平面的平行、線面平行的判定,利用好空間向量是關鍵,屬于基礎題.19、(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.20、(Ⅰ)填表見解析,有95%以上的把握認為“性別”與“問卷結果”有關;(Ⅱ)分布列見解析,【解析】
(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術品展覽租賃承包合同
- 2024年版:建筑工程施工分包協(xié)議書模板
- 醫(yī)療衛(wèi)生經(jīng)費管理規(guī)范
- 品牌故事講述櫥窗施工合同
- 2024年度電商企業(yè)文化建設與推廣合同6篇
- 珠寶加工工廠房屋租賃合同
- 教育培訓機構土地租賃協(xié)議
- 設備典當合同樣本
- 醫(yī)療服務科醫(yī)生勞動合同
- 食品安全監(jiān)管投標管理辦法
- 汽車吊起重吊裝專項施工方案
- 運動解剖學智慧樹知到課后章節(jié)答案2023年下云南體育運動職業(yè)技術學院
- 內部食堂用餐登記表-
- 北師大版六年級上冊第二單元整理與復習
- 團隊聯(lián)系人制度模板
- 生命教育三年級下冊
- 學院校食堂餐飲企業(yè)承包經(jīng)營退出管理制度
- 國開電大本科《人文英語4》機考真題(第十五套)
- 三維超聲輸卵管造影的應用課件
- 高壓旋噴樁檢測方案
- Unit1 My classroom Part A Lets spell(說課稿)-2022-2023學年英語四年級上冊
評論
0/150
提交評論