




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且,則m=()A.?8 B.?6C.6 D.82.已知向量,,則向量在向量上的投影是()A. B. C. D.3.若向量,,則與共線的向量可以是()A. B. C. D.4.設正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.365.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a6.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.7.()A. B. C. D.8.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種9.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.已知與之間的一組數(shù)據(jù):12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.511.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.“”是“函數(shù)的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知正四棱柱的底面邊長為,側面的對角線長是,則這個正四棱柱的體積是____.14.已知a,b均為正數(shù),且,的最小值為________.15.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.16.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關于直線對稱,則雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.18.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+19.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結.(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.20.(12分)某企業(yè)質量檢驗員為了檢測生產(chǎn)線上零件的質量情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數(shù),求的分布列及數(shù)學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用.現(xiàn)對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.21.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.22.(10分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.2、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.3、B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.4、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質,得成等差數(shù)列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.5、C【解析】
兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎題.6、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.7、B【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.8、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.9、C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質以及三角函數(shù)的變換規(guī)則,屬于基礎題.10、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.11、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.12、A【解析】
先求解函數(shù)的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關于直線對稱,則,解得,故“”是“函數(shù)的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數(shù)學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】Aa設正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.14、【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.15、1344【解析】
分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.16、【解析】
由點,關于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結果.【詳解】因為為雙曲線:的左焦點,所以,又點,關于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質,先由兩點對稱,求出直線斜率,再由焦點坐標求出直線方程,根據(jù)中點在直線上,即可求出結果,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.18、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應用問題,以及絕對值三角不等式的應用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應用問題,關鍵是等價轉化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關系,求出參數(shù)范圍.19、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算.【詳解】解:(Ⅰ)因為,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為,,,所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題.20、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】
(1)計算的頻率,并且與進行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數(shù),寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據(jù)余下零件個數(shù)服從二項分布,可得余下零件個數(shù)的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設尺寸中位數(shù)為所以所以這個零件尺寸的中位數(shù)(2)尺寸在的個數(shù)為尺寸在的個數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數(shù)期望值為如果不對余下的零件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鋅系常溫磷化液市場運營現(xiàn)狀與發(fā)展前景分析報告
- 2025-2030年中國釩鐵行業(yè)市場經(jīng)營狀況及投資戰(zhàn)略研究報告
- 2025江西省安全員B證(項目經(jīng)理)考試題庫
- 2025-2030年中國軟體家具市場運行態(tài)勢及發(fā)展趨勢分析報告
- 2025-2030年中國貝復舒行業(yè)前景展望及未來投資規(guī)劃研究報告
- 2025-2030年中國蛋品加工市場運營狀況及發(fā)展趨勢分析報告
- 2025-2030年中國管道管產(chǎn)業(yè)前景趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國硅酸鈣板行業(yè)運行動態(tài)與營銷策略研究報告
- 2025上海市建筑安全員-A證考試題庫及答案
- 吉林建筑大學《教師教學行為研究》2023-2024學年第二學期期末試卷
- 《工程合同管理與招投標實訓》課程電子教案
- 腫瘤科疼痛一病一品
- 2024-2030年中國礦用錨桿行業(yè)發(fā)展現(xiàn)狀需求分析報告
- 2024年1月浙江省高考英語真題試卷含答案
- 人民醫(yī)院樣本外送檢測管理制度
- DG-TJ 08-2451-2024 電動自行車集中充電和停放場所設計標準
- DB3301-T 65.28-2024 反恐怖防范系統(tǒng)管理規(guī)范 第28部分:硬質隔離設施
- 心電監(jiān)護儀的操作及注意事項 課件
- 11BS4排水工程華北標圖集
- 電子備課教案(一二年級體育)
- 湖北省武漢市漢陽區(qū)2023-2024學年七年級下學期期末數(shù)學試題
評論
0/150
提交評論