2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022年湖南省益陽市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.

3.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

4.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)

5.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

6.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

7.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸

8.

9.

10.設(shè)在點x=1處連續(xù),則a等于()。A.-1B.0C.1D.211.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

12.A.A.arctanx2

B.2xarctanx

C.2xarctanx2

D.

13.

14.A.A.1/3B.3/4C.4/3D.315.設(shè)Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)16.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

17.

18.

19.

20.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時,f'(x)<0;x>-1時,f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點,但不是極值點B.x=-1不是駐點C.x=-1為極小值點D.x=-1為極大值點二、填空題(20題)21.

22.設(shè),則y'=______。23.24.25.26.27.28.函數(shù)f(x)=x3-12x的極小值點x=_______.

29.

30.設(shè),將此積分化為極坐標(biāo)系下的積分,此時I=______.

31.32.

33.

34.

35.36.37.設(shè)z=sin(x2y),則=________。

38.

39.

40.三、計算題(20題)41.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

44.

45.求微分方程y"-4y'+4y=e-2x的通解.

46.求微分方程的通解.

47.

48.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.49.50.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則51.52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.53.

54.

55.

56.將f(x)=e-2X展開為x的冪級數(shù).57.證明:58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.

62.

63.求微分方程y"-y'-2y=0的通解。

64.

65.

66.

67.設(shè)y=3x+lnx,求y'.

68.

69.某廠要生產(chǎn)容積為Vo的圓柱形罐頭盒,問怎樣設(shè)計才能使所用材料最省?

70.

五、高等數(shù)學(xué)(0題)71.極限

=__________.

六、解答題(0題)72.

參考答案

1.B

2.B解析:

3.C

4.A

5.C

6.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

7.A本題考查的知識點有兩個:羅爾中值定理;導(dǎo)數(shù)的幾何意義.

由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.

如果曲線y=f(x)在點(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無窮大,此時說明f(x)在點x=ξ不可導(dǎo).因此可知B,D都不正確.

本題對照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.

有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯誤.

8.A

9.B解析:

10.C本題考查的知識點為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點。在x=1的兩側(cè)f(x)的表達式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點時,應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

11.D本題考查的知識點為偏導(dǎo)數(shù)的運算.

z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有

可知應(yīng)選D.

12.C

13.B

14.B

15.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。

16.C

17.B

18.C

19.D

20.C本題考查的知識點為極值的第一充分條件.

由f'(-1)=0,可知x=-1為f(x)的駐點,當(dāng)x<-1時,f'(x)<0;當(dāng)x>-1時,f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點,故應(yīng)選C.

21.-2-2解析:22.本題考查的知識點為導(dǎo)數(shù)的運算。23.-24.

本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

24.

本題考查的知識點為定積分的換元法.

解法1

解法2

令t=1+x2,則dt=2xdx.

當(dāng)x=1時,t=2;當(dāng)x=2時,t=5.

這里的錯誤在于進行定積分變量替換,積分區(qū)間沒做變化.

25.解析:

26.27.e;本題考查的知識點為極限的運算.

注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>

28.22本題考查了函數(shù)的極值的知識點。f'(x)=3x2-12=3(x-2)(x+2),當(dāng)x=2或x=-2時,f'(x)=0,當(dāng)x<-2時,f'(x)>0;當(dāng)-2<x<2時,f'(x)<0;當(dāng)x>2時,f’(x)>0,因此x=2是極小值點,

29.

30.

31.5.

本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

32.

33.x

34.

35.

本題考查的知識點為不定積分的換元積分法.

36.1/6

本題考查的知識點為計算二重積分.

37.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。

38.ln2

39.11解析:

40.1本題考查了一階導(dǎo)數(shù)的知識點。

41.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%42.函數(shù)的定義域為

注意

43.

44.

45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

46.

47.

48.

49.

50.由等價無窮小量的定義可知

51.

52.

53.

54.

55.由一階線性微分方程通解公式有

56.

57.

58.

列表:

說明

59.由二重積分物理意義知

60.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.本題考查的知識點為兩個:定積分表示-個確定的數(shù)值;計算定積分.

這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論