版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
8.6.1直線與直線垂直不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線。異面直線的定義:相交直線:有一個(gè)公共點(diǎn)
平行直線:無(wú)公共點(diǎn)異面直線:無(wú)公共點(diǎn)空間兩直線的位置關(guān)系基本事實(shí)4:在空間平行于同一條直線的兩條直線互相平行.空間中,如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).等角定理:復(fù)習(xí)引入異面直線的畫法αbaαβba注意:作圖時(shí),需要一個(gè)或二個(gè)平面襯托異面直線所成的角
在平面內(nèi),兩條直線相交成四個(gè)角,其中不大于90度的角稱為它們的夾角,用以刻畫兩直線的錯(cuò)開程度,如圖.在空間,如圖所示,正方體ABCD-EFGH中,異面直線AB與HF的錯(cuò)開程度可以怎樣來(lái)刻畫呢?ABGFHEDCO問(wèn)題提出復(fù)習(xí)引入abb′a′O思想方法:平移轉(zhuǎn)化成相交直線所成的角,即化空間圖形問(wèn)題為平面圖形問(wèn)題思考:
這個(gè)角的大小與O點(diǎn)的位置有關(guān)嗎?即O點(diǎn)位置不同時(shí),這一角的大小是否改變?異面直線所成的角的范圍(0,90]oo如果兩條異面直線a,b所成的角為直角,我們就稱這兩條直線互相垂直,記為a⊥b注2a
″學(xué)習(xí)新知異面直線所成角的定義:
如圖,已知兩條異面直線a,b,經(jīng)過(guò)空間任一點(diǎn)O作直線
則把
與
所成的銳角(或直角)叫做異面直線所成的角(或夾角).思考:
這個(gè)角的大小與O點(diǎn)的位置有關(guān)嗎?即O點(diǎn)位置不同時(shí),這一角的大小是否改變?∵a′∥a,a″∥a∴a′∥
a″
(基本事實(shí)4),解答:
如圖設(shè)a′與b′相交所成的角為∠1,a
″與b
所成的角為∠2,同理b′∥b″,∴∠1=∠2
(等角定理)b′a′O∠1aa″b∠2
答:這個(gè)角的大小與O點(diǎn)的位置無(wú)關(guān).學(xué)習(xí)新知(1)異面直線所成角的大小只和兩條異面直線的位置有關(guān),而和點(diǎn)O的位置無(wú)關(guān)(2)異面直線所成的角的范圍是:(0°<θ≤90°)(3)如果兩條異面直線所成的角是直角,那么我們就說(shuō)這兩條直線互相垂直,兩條互相垂直的異面直線a,b,記作a⊥b這個(gè)很重要哦說(shuō)明空間的垂直有相交垂直和異面垂直,區(qū)別在于一個(gè)是相交,一個(gè)是異面.學(xué)習(xí)新知求異面直線所成的角的步驟是:
一作(找):作(或找)平行線二證:證明所作的角為所求的異面直線所成的角。三計(jì)算:在一恰當(dāng)?shù)娜切沃星蟪鼋菍W(xué)習(xí)新知ABGFHEDC
如圖,正方體ABCD-EFGH中,O為側(cè)面ADHE的中心求(1)BE與CG所成的角?(2)FO與BD所成的角?
解:
(1)如圖:∵BF∥CG,∴∠EBF(或其補(bǔ)角)為異面直線BE與CG所成的角,又
BEF中∠EBF=45°,所以BE與CG所成的角是45°O連接HA、AF,依題意知O為AH中點(diǎn),∴∠HFO=30o(2)連接FH,所以FO與BD所成的夾角是30o∴四邊形BFHD為平行四邊形,∴HF∥BD∴∠HFO(或其補(bǔ)角)為異面直線FO與BD所成的角∵HDEA,EAFB∴HDFB∥=∥=∥=則AH=HF=FA∴△AFH為等邊△典型例題例1、如圖,已知正方體ABCD-A'B'C'D'
中。(1)哪些棱所在的直線與直線AA'
垂直?(2)直線BA'
和CC'
所成的角是多少?(3)直線BA'
和AC
所成的角是多少?例題選講解:(1)棱AB,BC,CD,DA,A'B',B'C',C'D',D'A',所在直線分別與直線AA'
垂直(2)由
可知,
(或其補(bǔ)角)是異面直線
與所成的角,所以異面直線與所成的角為450。
例1、如圖,已知正方體ABCD-A'B'C'D'
中。(1)哪些棱所在的直線與直線AA'
垂直?(2)直線BA'
和CC'
所成的角是多少?(3)直線BA'
和AC
所成的角是多少?例題選講
在求作異面直線所成的角時(shí),O點(diǎn)常選在其中的一條直線上
(如線段的端點(diǎn),線段的中點(diǎn)等)注3學(xué)習(xí)新知
如圖,已知長(zhǎng)方體ABCD-EFGH中,AB=,AD=,AE=2(1)求BC和EG所成的角是多少度?(2)求AE和BG所成的角是多少度?解答:(1)∵GF∥BC∴∠EGF(或其補(bǔ)角)為所求.Rt△EFG中,求得∠EGF=45o(2)∵BF∥AE∴∠FBG(或其補(bǔ)角)為所求,Rt△BFG中,求得∠FBG=60oABGFHEDC2鞏固練習(xí)例2如圖,在正方體ABCD-A1B1C1D1中,E,F分別是A1B1,B1C1的中點(diǎn),求異面直線DB1與EF所成角的大小.分析先作出角,再證明角的兩邊分別與兩異面直線平行,最后在三角形中求角.法一如圖,連接A1C1,B1D1,并設(shè)它們相交于點(diǎn)O,取DD1的中點(diǎn)G,連接OG,則OG∥B1D,EF∥A1C1.∴∠GOA1(或其補(bǔ)角)為異面直線DB1與EF所成的角.∵GA1=GC1,O為A1C1的中點(diǎn),∴GO⊥A1C1.∴異面直線DB1與EF所成的角為90°.OG例題選講例2如圖,在正方體ABCD-A1B1C1D1中,E,F分別是A1B1,B1C1的中點(diǎn),求異面直線DB1與EF所成角的大小.例題選講H1.作出角;2;證明角(或其補(bǔ)角);3.求角.法二如圖,連接A1D,取A1D的中點(diǎn)H,連接HE,則HE∥DB1,且HE=DB1.于是∠HEF(或其補(bǔ)角)為異面直線DB1與EF所成的角.∴HF2=EF2+HE2,∴∠HEF=90°,∴異面直線DB1與EF所成的角為90°.例2如圖,在正方體ABCD-A1B1C1D1中,E,F分別是A1B1,B1C1的中點(diǎn),求異面直線DB1與EF所成角的大小.例題選講法三如圖,在原正方體的右側(cè)補(bǔ)上一個(gè)全等的正方體,連接B1Q,則B1Q∥EF.于是∠DB1Q(或其補(bǔ)角)為異面直線DB1與EF所成的角.通過(guò)計(jì)算,不難得到:B1D2+B1Q2=DQ2,從而異面直線DB1與EF所成的角為90°.求兩條異面直線所成的角是立體幾何中的重要題型之一,而求它的常用方法是空間問(wèn)題平面化.(1)具體地,求兩條異面直線所成角的一般步驟是:①構(gòu)造:恰當(dāng)?shù)剡x擇一個(gè)點(diǎn)(線段的端點(diǎn)或中點(diǎn)),用平移法構(gòu)造異面直線所成的角;②證明:證明①中所作出的角或其補(bǔ)角就是所求異面直線所成的角;③計(jì)算:通過(guò)解三角形等知識(shí),求出①中所構(gòu)造的角的大小;④結(jié)論:假如所構(gòu)造的角的大小為α,若0°<α≤90°,則α即為所求異面直線所成角的大小;若90°<α<180°,則180°-α即為所求.總結(jié)方法(2)作出異面直線所成的角,可通過(guò)多種方法平移產(chǎn)生,主要有三種方法:①直接平移法(可利用圖中已有的平行線);②中位線平移法;③補(bǔ)形平移法(在已知圖形中,補(bǔ)作一個(gè)相同的幾何體,以便找到平行線).【例3】空間四邊形ABCD中,AB=CD且AB與CD所成的角為50°,E,F(xiàn)分別是BC,AD的中點(diǎn),則EF與AB所成角的大小為________.
分析:先構(gòu)造出已知兩條異面直線所成角,尋求要求的角與已知角的關(guān)系.【解】取BD中點(diǎn)G,連接EG,FG,則由三角形中位線定理得EG∥CD,EG=CD,F(xiàn)G∥AB,F(xiàn)G=AB,所以EG=FG,EF與AB所成角為∠EFG,因?yàn)锳B與CD所成的角為50°,所以∠EGF=50°或∠EGF=130°,所以EF與AB所成角的大小為25°或65°.典型例題練.(2019·南京高一檢測(cè))在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF=,則異面直線AD與BC所成角的大小為 (
)A.150°B.60°C.120°D.30°取AC的中點(diǎn)M,連接EM,F(xiàn)M.M則EM∥BC,F(xiàn)M∥AD,EM=FM=1,所以∠EMF或其補(bǔ)角即為異面直線AD與BC所成角.在△MEF中,cos∠EMF=所以∠EMF=150°.所以異面直線AD與BC所成角的大小為30°.鞏固練習(xí)D分析:要證明AO1⊥BD,應(yīng)先構(gòu)造直線AO1與BD所成的角,若能證明這個(gè)角是直角,即得AO1⊥BD.【證明】如圖,連接B1D1.∵ABCD-A1B1C1D1是正方體,∴BB1//DD1,BB1=DD1.∴四邊形BB1D1D是平行四邊形.∴B1D1∥BD.∴直線AO1與B1D1所成的角即為直線AO1與BD所成的角.典型例題F鞏固練習(xí)鞏固練習(xí)90度當(dāng)已知條件中含有異面直線所成角時(shí),應(yīng)先作出該角,才能應(yīng)用此條件,但要注意作出的角不一定是已知異面直線所成角,也可能是已知角的補(bǔ)角,應(yīng)分情況討論.典型例題
【練】(2019·白城高一檢測(cè))在四棱柱ABCD-A1B1C1D1中,側(cè)面都是矩形,底面四邊形ABCD是菱形,且AB=BC=2,∠ABC=120°,若異面直線A1B和AD1所成的角是90°,則AA1的長(zhǎng)度是________.
鞏固練習(xí)課堂小結(jié)1、異面直線所成角的定義:如圖,已知兩條異面直線a,b,經(jīng)過(guò)空間任一點(diǎn)O作直線a′∥
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題06 三角形(全等、相似)(2大易錯(cuò)點(diǎn)分析+19個(gè)易錯(cuò)點(diǎn)+易錯(cuò)題通關(guān))-2024年中考數(shù)學(xué)考試易錯(cuò)題(解析版)
- 2024藥品銷售個(gè)人工作總結(jié)(35篇)
- 管道強(qiáng)度課程設(shè)計(jì)總結(jié)
- 自行車課課程設(shè)計(jì)
- 稅務(wù)工作總結(jié)稅收優(yōu)惠減免政策執(zhí)行情況
- 2024年物業(yè)辦公室管理制度及崗位職責(zé)(共4篇)
- 2024年稅務(wù)師題庫(kù)(名師系列)
- 《夢(mèng)幻西游案例分析》課件
- 2024年的語(yǔ)文教案篇
- 第7單元 工業(yè)革命和國(guó)際共產(chǎn)主義運(yùn)動(dòng)的興起(A卷·知識(shí)通關(guān)練)(解析版)
- 宜賓市翠屏區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末生物試題【帶答案】
- DL-T5394-2021電力工程地下金屬構(gòu)筑物防腐技術(shù)導(dǎo)則
- 2021泛海三江JB-QBL-QM210火災(zāi)自動(dòng)報(bào)警控制器消防聯(lián)動(dòng)控制器說(shuō)明書
- 兒科護(hù)理技術(shù)操作規(guī)范
- 2024年江蘇宿遷經(jīng)濟(jì)技術(shù)開發(fā)區(qū)城市管理輔助人員招聘筆試參考題庫(kù)附帶答案詳解
- 馬拉松賽事運(yùn)營(yíng)服務(wù)方案
- 陽(yáng)光少年體驗(yàn)營(yíng)輔導(dǎo)員工作總結(jié)
- 國(guó)家能源集團(tuán)考試試題
- 2024銷售業(yè)績(jī)深度總結(jié)報(bào)告
- 小學(xué)道德與法治教學(xué)工作總結(jié)3篇
- (高清版)DZT 0388-2021 礦區(qū)地下水監(jiān)測(cè)規(guī)范
評(píng)論
0/150
提交評(píng)論