2021-2022學年河南省許昌平頂山高考數(shù)學二模試卷含解析_第1頁
2021-2022學年河南省許昌平頂山高考數(shù)學二模試卷含解析_第2頁
2021-2022學年河南省許昌平頂山高考數(shù)學二模試卷含解析_第3頁
2021-2022學年河南省許昌平頂山高考數(shù)學二模試卷含解析_第4頁
2021-2022學年河南省許昌平頂山高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.2.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.3.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.4.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元5.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-16.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.7.已知隨機變量的分布列是則()A. B. C. D.8.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.69.設(shè)集合,,若,則()A. B. C. D.10.已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點11.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),且周期為,當時,,則的值為___________________.14.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.已知等比數(shù)列滿足公比,為其前項和,,,構(gòu)成等差數(shù)列,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設(shè)直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.18.(12分)已知,.(1)當時,證明:;(2)設(shè)直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.19.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.20.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.21.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.22.(10分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.2.A【解析】

如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.3.C【解析】

根據(jù)題意,知當時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.4.D【解析】

根據(jù)折線圖、柱形圖的性質(zhì),對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.5.B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.6.A【解析】

先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.7.C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.8.C【解析】

根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.

答案:C【點睛】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁亲詈笠欢ㄒ炞C等號能否成立,屬于基礎(chǔ)題.9.A【解析】

根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.10.A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.11.D【解析】

先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。12.A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.14.,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.15.【解析】

設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.16.0【解析】

利用等差中項以及等比數(shù)列的前項和公式即可求解.【詳解】由,,是等差數(shù)列可知因為,所以,故答案為:0【點睛】本題考查了等差中項的應(yīng)用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設(shè)直線:,聯(lián)立,利用韋達定理算出的中點,又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設(shè)的準線為,過作于,則由拋物線定義,得,因為到的距離比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設(shè)直線方程為,由消去,得,設(shè),,則,所以,又因為為的中點,點的坐標為,直線的方程為,令,得,點的坐標為,所以,解得,所以直線的斜率為.【點睛】本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學生的運算求解能力.涉及拋物線的弦的中點,斜率問題時,可采用韋達定理或“點差法”求解.18.(1)證明見解析;(2).【解析】

(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點處的切線的方程①,再設(shè)直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點,且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當時,為單調(diào)遞增函數(shù),且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調(diào)遞增函數(shù),,所以;因為為單調(diào)遞增函數(shù),且,因此;因為為整數(shù),且,所以.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.19.(1)見解析;(2).【解析】

(1)設(shè)點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設(shè)點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關(guān)于的表達式,結(jié)合不等式可解出實數(shù)的取值范圍.【詳解】(1)設(shè)點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設(shè)點到直線的高為,則,,,,解得,因此,實數(shù)的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是難題.20.(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數(shù)方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.21.(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調(diào)遞增,當時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當時,.又由上式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論