版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.2.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.133.已知向量,,則向量與的夾角為()A. B. C. D.4.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.5.在中,分別為所對的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.6.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件7.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b8.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.9.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.10.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]11.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.12.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點(diǎn),,若線段EF上存在一點(diǎn)M,使得,則____________,____________.(本題第1空2分,第2空3分)14.已知兩個(gè)單位向量滿足,則向量與的夾角為_____________.15.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為__________.16.已知集合,,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時(shí)直線的方程.18.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線交拋物線:于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長度最小時(shí),求的值.19.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點(diǎn).(1)求證:平面平面;(2)若為線段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.20.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實(shí)數(shù)的取值范圍.21.(12分)的內(nèi)角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.2.D【解析】
利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.3.C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.4.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問題,涉及到雙曲線的定義,是一道容易題.5.D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.6.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力.7.A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡運(yùn)算能力,屬于中檔題.8.A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.9.C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點(diǎn)為,復(fù)數(shù)對應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.10.B【解析】
作出可行域,對t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.11.A【解析】
結(jié)合復(fù)數(shù)的除法運(yùn)算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長、平方運(yùn)算,屬于基礎(chǔ)題12.B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,設(shè),則,所以,解得,所以,從而有.14.【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的計(jì)算和夾角的計(jì)算,意在考查學(xué)生對這些知識(shí)的理解掌握水平.15.-1【解析】
作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。桑肁(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題16.【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點(diǎn)睛】本題考查了交集及其運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)面積的最大值為,此時(shí)直線的方程為.【解析】
(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點(diǎn)到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點(diǎn)的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點(diǎn),,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,因此面積的最大值為,此時(shí)直線的方程為.【點(diǎn)睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是橢圓;(2)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是雙曲線.18.(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因?yàn)閽佄锞€的方程為,所以的坐標(biāo)為,設(shè),因?yàn)閳A與軸、直線都相切,平行于軸,所以圓的半徑為,點(diǎn),則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設(shè),,,由(1)知,點(diǎn)處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即取得最小值,此時(shí).點(diǎn)睛:求軌跡方程,一般是問誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).19.(1)見解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)椋允钦切危?,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.?)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系.則.于是,,.設(shè)面的一個(gè)法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個(gè)法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點(diǎn)睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識(shí)點(diǎn),考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對值的不等式,考查學(xué)生的分類思想和計(jì)算能力,屬于中檔題.21.(1)(2)【解析】
(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長.(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字化轉(zhuǎn)型工作手冊
- 中國宏觀經(jīng)濟(jì)的未來發(fā)展路徑
- 不同風(fēng)格家居的室內(nèi)軟裝飾品選擇與搭配
- 2025年萊蕪從業(yè)資格證模擬考試題貨運(yùn)考題
- 2025年恩施貨運(yùn)考試題目
- 以用戶為中心的學(xué)校教室環(huán)境優(yōu)化實(shí)踐與思考
- 2025年遼寧貨運(yùn)從業(yè)資格證模擬題
- 2025年十堰大車貨運(yùn)資格證考試題
- 以家為單位推進(jìn)網(wǎng)絡(luò)安全教育與發(fā)展
- 2025年淮北道路貨運(yùn)從業(yè)資格證模擬考試下載什么軟件
- 幼兒游戲的課件
- 2025年重慶貨運(yùn)從業(yè)資格證考試題及答案詳解
- 三三制薪酬設(shè)計(jì)
- 中藥鑒定學(xué)智慧樹知到答案2024年中國藥科大學(xué)
- 現(xiàn)代教育技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年濟(jì)寧學(xué)院
- 現(xiàn)代通信技術(shù)導(dǎo)論智慧樹知到期末考試答案章節(jié)答案2024年北京科技大學(xué)
- (完整版)服裝生產(chǎn)工藝流程圖匯總,推薦文檔
- 優(yōu)秀團(tuán)支部申報(bào)表
- 初中體育 健美操初級(jí)12個(gè)教案
- 常德市垃圾填埋場設(shè)計(jì)計(jì)算說明書
- 第三章 高分子的溶液性質(zhì)
評論
0/150
提交評論