【優(yōu)化方案】高中數(shù)學(xué) 第2章2.2.3第二課時兩條直線垂直的條件課件 新人教B必修2_第1頁
【優(yōu)化方案】高中數(shù)學(xué) 第2章2.2.3第二課時兩條直線垂直的條件課件 新人教B必修2_第2頁
【優(yōu)化方案】高中數(shù)學(xué) 第2章2.2.3第二課時兩條直線垂直的條件課件 新人教B必修2_第3頁
【優(yōu)化方案】高中數(shù)學(xué) 第2章2.2.3第二課時兩條直線垂直的條件課件 新人教B必修2_第4頁
【優(yōu)化方案】高中數(shù)學(xué) 第2章2.2.3第二課時兩條直線垂直的條件課件 新人教B必修2_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第二課時兩條直線垂直的條件1.理解垂直是直線相交的特殊情況,會判斷直線的垂直關(guān)系.2.能利用直線的垂直關(guān)系解決直線的位置關(guān)系問題.學(xué)習(xí)目標(biāo)

課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案第二課時課前自主學(xué)案溫故夯基直線l1:A1x+B1y+C1=0,直線l2:A2x+B2y+C2=0.l1∥l2

?A1B2-A2B1=0且B1C2-B2C1≠0.l1與l2相交?A1B2-A2B1≠0.1.兩條直線垂直的條件(1)設(shè)l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0;若l1⊥l2,則________________.(2)設(shè)l1:y=k1x+b1,l2:y=k2x+b2,當(dāng)_____________時,l1⊥l2.若l1與l2中,一條直線的斜率為0,而另一條直線的斜率_________時,l1也與l2垂直.2.與直線Ax+By+C=0垂直的直線系設(shè)l:Ax+By+C=0,則與l垂直的直線方程可表示為_______________.知新益能A1A2+B1B2=0k1·k2=-1不存在Bx-Ay+D=03.點(diǎn)或直線的對稱性(1)點(diǎn)關(guān)于線的對稱點(diǎn)①A(a,b)關(guān)于x軸的對稱點(diǎn)為A′_____________;②B(a,b)關(guān)于y軸的對稱點(diǎn)為B′_____________;③C(a,b)關(guān)于直線y=x的對稱點(diǎn)為C′________;④D(a,b)關(guān)于直線y=-x的對稱點(diǎn)為D′____________;⑤P(a,b)關(guān)于直線x=m的對稱點(diǎn)為P′____________;⑥Q(a,b)關(guān)于直線y=n的對稱點(diǎn)為Q′____________.(a,-b)(-a,b)(b,a)(-b,-a)(2m-a,b)(a,2n-b)(2)線關(guān)于點(diǎn)的對稱直線直線l:Ax+By+C=0關(guān)于P(x0,y0)的對稱直線為___________________________.(3)線關(guān)于線的對稱性設(shè)直線l:Ax+By+C=0,①l關(guān)于x軸對稱的直線是:___________________;②l關(guān)于y軸對稱的直線是:__________________;③l關(guān)于原點(diǎn)對稱的直線是:____________________;④l關(guān)于y=x對稱的直線是:______________;⑤l關(guān)于直線y=-x對稱的直線是:__________________________.A(2x0-x)+B(2y0-y)+C=0Ax+B(-y)+C=0A(-x)+By+C=0A(-x)+B(-y)+C=0Bx+Ay+C=0A(-y)+B(-x)+C=0思考感悟判斷兩直線垂直時,能否直接用斜率之積為-1呢?提示:不能.應(yīng)先判斷兩直線斜率是否存在.課堂互動講練考點(diǎn)一判定直線垂直考點(diǎn)突破直接驗證垂直條件.例1

判斷下列各小題中的直線l1與l2是否垂直.(1)l1經(jīng)過點(diǎn)A(-1,-2),B(1,2),l2經(jīng)過點(diǎn)M(-2,-1),N(2,1);(2)l1的斜率為-10,l2經(jīng)過點(diǎn)A(10,2),B(20,3);(3)l1經(jīng)過點(diǎn)A(3,4),B(3,100),l2經(jīng)過點(diǎn)M(-10,40),N(10,40).【分析】

利用k1·k2=-1判定.【點(diǎn)評】判定兩直線線是否垂直直有兩種方方法:一是是A1A2+B1B2=0;二二是是k1·k2=--1,本本題題沒沒有有給給出出直直線線方方程程的的一一般般式式,,因因此此可可先先求求出出斜斜率率,,利利用用k1·k2=--1判定定較較簡簡單單,,但但應(yīng)應(yīng)注注意意數(shù)數(shù)形形結(jié)結(jié)合合..注注意意公公式式k1k2=--1成立立的的條條件件,,特特殊殊情情形形時時要要數(shù)數(shù)形形結(jié)結(jié)合合,,作作出出判判斷斷..跟蹤蹤訓(xùn)訓(xùn)練練1判斷斷下下列列各各組組中中兩兩條條直直線線是是否否垂垂直直..(1)y=x,2x+2y-7=0;(2)x+4y-5=0,4x-3y-5=0;(3)2x-y=0,x-2y=0.解::(1)A1=1,B1=--1,A2=2,B2=2.∵A1A2+B1B2=1×2+(-1)×2=0,∴兩直直線線垂垂直直..(2)A1=1,B1=4,A2=4,B2=--3.∵A1A2+B1B2=1×4+4×(-3)=--8≠0,∴兩兩直直線線不不垂垂直直..(3)A1=2,B1=--1,A2=1,B2=--2.∵A1A2+B1B2=2××1+(-1)××(-2)=4≠≠0,∴兩兩直直線線不不垂垂直直..考點(diǎn)二已知垂直求參數(shù)或直線方程利用用垂垂直直條條件件建建立立方方程程..例2直線l過點(diǎn)P(1,-1)且與直線線2x+3y+1=0垂直,求求l的方程..【分析】由于l上的點(diǎn)P(1,-1)已知,故故可由兩兩直線的的垂直關(guān)關(guān)系得出出k,利用點(diǎn)點(diǎn)斜式求求直線方方程,或或利用一一般式..法二:由由l與直線2x+3y+1=0垂直,可可設(shè)l的方程為為3x-2y+C=0.∵P(1,-1)在l上,∴3×1-2×(-1)+C=0,解得C=-5.∴l(xiāng)的方程為為3x-2y-5=0.【點(diǎn)評】(1)常把一般般式化為為斜截式式,求出出已知斜斜率,再再利用斜斜率間的的關(guān)系得得垂直直直線的斜斜率;(2)若直線l與直線Ax+By+C=0垂直,則則直線l方程可設(shè)設(shè)為Bx-Ay+D=0.跟蹤訓(xùn)訓(xùn)練2直線l1:ax+(1-a)y=3與l2:(a-1)x+(2a+3)y=2互相垂垂直,,求a的值..考點(diǎn)三對稱性問題研究對對稱性性問題題,主主要利利用中中點(diǎn)和和垂直直關(guān)系系.求點(diǎn)P(2,4)關(guān)于直直線l:2x-y+1=0的對稱稱點(diǎn)P′的坐標(biāo)標(biāo).【分析】線段PP′所在直直線與與已知知直線線l垂直且且PP′的中點(diǎn)點(diǎn)在已已知直直線上上.例3【點(diǎn)評】設(shè)P與P′關(guān)于直直線l對稱,,則幾幾何條條件為為PP′⊥l,且PP′的中點(diǎn)點(diǎn)在直直線l上,轉(zhuǎn)轉(zhuǎn)化為為代數(shù)數(shù)式后后即可可解得得所求求點(diǎn)的的坐標(biāo)標(biāo).跟蹤訓(xùn)訓(xùn)練3已知直直線l:x+2y-2=0,試求求:(1)點(diǎn)P(-2,-1)關(guān)于直直線l的對稱稱點(diǎn)坐坐標(biāo);;(2)直線l1:y=x-2關(guān)于直直線l對稱的的直線線l2的方程程;(3)直線l關(guān)于點(diǎn)點(diǎn)A(1,1)對稱的的直線線方程程.方法感悟1.判斷斷兩直直線垂垂直(1)如果斜斜率都都存在在,只只判斷斷k1k2=-1;如果果一條條直線線的斜斜率不不存在在,則則另一一條直直線的的斜率率必等等于零零,從從斜率率的角角度判判斷,,應(yīng)注注意上上面的的兩種種情況況;(2)利用A1A2+B1B2=0判斷..2.求直直線關(guān)關(guān)于點(diǎn)點(diǎn)的對對稱直直線的的方法法(1)求一條條直線線關(guān)于于點(diǎn)A(a,b)的對稱稱直線線方程程時可可在該該直線線上取取兩個個特殊殊點(diǎn),,利用用中點(diǎn)點(diǎn)坐標(biāo)標(biāo)公式式可求求得點(diǎn)點(diǎn)P(x0,y0)關(guān)于點(diǎn)A(a,b)的對稱點(diǎn)坐坐標(biāo)為P′(2a-x0,2b-y0),然后利用用兩點(diǎn)式求求其直線方方程;(2)(一般性方法法)可設(shè)所求的的直線l上任意一點(diǎn)點(diǎn)坐標(biāo)為(x,y),再求它關(guān)關(guān)于A(a,b)的對稱點(diǎn)坐坐標(biāo),而它它的對稱點(diǎn)點(diǎn)在已知直直線上,將將其代入已已知直線方方程,便可可得到關(guān)于于x、y的方程,即即為所求的的直線方程程.(2)點(diǎn)A(x,y)關(guān)于直線x+y+C=0的對稱點(diǎn)A′的坐標(biāo)為(-y-C,-x-C),關(guān)于直線線x-y+C=0的對稱點(diǎn)A″的坐標(biāo)為(y-C,x+C).4.求直線關(guān)關(guān)于直線的的對稱直線線求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論