




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,,則()A. B. C. D.2.的內角的對邊分別為,若,則內角()A. B. C. D.3.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件4.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.5.已知集合,,若AB,則實數的取值范圍是()A. B. C. D.6.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.07.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉一周后形成的幾何體的表面積為()A. B. C. D.8.若函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間上單調遞增,則的最大值為().A. B. C. D.9.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數是()A.12 B.16 C.20 D.810.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.11.已知函數(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或412.設是虛數單位,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.15.已知一個圓錐的底面積和側面積分別為和,則該圓錐的體積為________16.己知函數,若曲線在處的切線與直線平行,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.18.(12分)某企業(yè)生產一種產品,從流水線上隨機抽取件產品,統(tǒng)計其質量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產品的質量指標值在的為劣質品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產品的質量指標值位于各區(qū)間的頻率代替產品的質量指標值位于該區(qū)間的概率.(1)求每件產品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數據做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.表中,,,.根據散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.①求關于的回歸方程;②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,?。└剑簩τ谝唤M數據,,,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)已知數列的前項和為,且滿足().(1)求數列的通項公式;(2)設(),數列的前項和.若對恒成立,求實數,的值.20.(12分)已知函數.(1)若是函數的極值點,求的單調區(qū)間;(2)當時,證明:21.(12分)設函數.(1)求的值;(2)若,求函數的單調遞減區(qū)間.22.(10分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.2.C【解析】
由正弦定理化邊為角,由三角函數恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.3.D【解析】
由題意列出約束條件和目標函數,數形結合即可解決.【詳解】設購買甲、乙兩種商品的件數應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經過時,最大.故選:D.【點睛】本題考查線性目標函數的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數,是否是非負數,并準確的畫出可行域,本題是一道基礎題.4.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.5.D【解析】
先化簡,再根據,且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.6.C【解析】
畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.7.B【解析】
根據斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側面展開圖是扇形根據扇形面積公式即可求得組合體的表面積.【詳解】根據“斜二測畫法”可得,,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.8.C【解析】
由題意利用函數的圖象變換規(guī)律,正弦函數的單調性,求出的最大值.【詳解】解:把函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間,上單調遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數的圖象變換規(guī)律,正弦函數的單調性,屬于基礎題.9.A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.10.A【解析】
根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.11.C【解析】
對a進行分類討論,結合指數函數的單調性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數函數的值域問題,指數函數的值域一般是利用單調性求解,側重考查數學運算和數學抽象的核心素養(yǎng).12.A【解析】
利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.【點睛】本題考查復數的乘法運算,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14.【解析】
由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.15.【解析】
依據圓錐的底面積和側面積公式,求出底面半徑和母線長,再根據勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!军c睛】本題主要考查圓錐的底面積、側面積和體積公式的應用。16.【解析】
先求導,再根據導數的幾何意義,有求解.【詳解】因為函數,所以,所以,解得.故答案為:【點睛】本題考查導數的幾何意義,還考查運算求解能力以及數形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數量積為0,要聯(lián)立方程組設而不求,利用坐標關系及根與系數關系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.試題解析:(1)解:設,,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當時,,故直線的方程為.(2)設,,,則.∴.設,由直線和圓相切,得,即.設,同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當時,;當時,.故或.18.(1)元.(2)①②萬元【解析】
(1)每件產品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數,得,令,,,則,這就是線性回歸方程,由所給公式數據計算出系數,得線性回歸方程,從而可求得;②求出收益,可設換元后用導數求出最大值.【詳解】解:(1)設每件產品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產品為劣質品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數據可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設年收益為萬元,則令,則,,當時,,當時,,所以當,即時,有最大值.即該企業(yè)每年應該投入萬元營銷費,能使得該企業(yè)的年收益的預報值達到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應用.在求指數型回歸方程時,可通過取對數的方法轉化為求線性回歸直線方程,然后再求出指數型回歸方程.19.(1)(2),.【解析】
(1)根據數列的通項與前n項和的關系式,即求解數列的通項公式;(2)由(1)可得,利用等比數列的前n項和公式和裂項法,求得,結合題意,即可求解.【詳解】(1)由題意,當時,由,解得;當時,可得,即,顯然當時上式也適合,所以數列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.【點睛】本題主要考查了數列的通項公式的求解,等差數列的前n項和公式,以及裂項法求和的應用,其中解答中熟記等差、等比數列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.20.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】
(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數的符號即可判斷單調區(qū)間.(2)當時,.代入函數解析式放縮為,代入證明的不等式可化為,構造函數,并求得,由函數單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數的最小值,由對數式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數取得最小值,,,故,從而,即,結論成立.【點睛】本題考查了由函數極值求參數,并根據導數判斷函數的單調區(qū)間,利用導數證明不等式恒成立,構造函數法的綜合應用,屬于難題.21.(1)(2)的遞減區(qū)間為和【解析】
(1)化簡函數,代入,計算即可;(2)先利用正弦函數的圖象與性質求出函數的單調遞減區(qū)間,再結合即可求出.【詳解】(1),從而.(2)令.解得.即函數的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數的恒等變形,正弦函數的圖象與性質,屬于中檔題.22.(1)(2)【解析】
(1)先分別表示出,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)智能管理平臺開發(fā)采購合同
- 戶外運動裝備租賃使用安全免責協(xié)議書
- 硬件設備購銷合同
- 游戲行業(yè)虛擬物品交易風險告知免責協(xié)議
- 獨家代理手房合同
- 工程總承包聯(lián)合體協(xié)議書
- 基于大數據的智能能源管理系統(tǒng)合作協(xié)議
- 專利申請與維護合同
- 工傷補償的協(xié)議書
- 交通網絡運輸承包經營合同
- 2025年伊春職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025版林木砍伐與生態(tài)修復工程承包合同2篇
- 課題申報參考:社會網絡視角下村改居社區(qū)公共空間優(yōu)化與“土客關系”重構研究
- 如何管理好一家公寓
- 2025年零售業(yè)員工職業(yè)發(fā)展規(guī)劃與培訓
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 《山東膠州秧歌》課件
- 《復合材料電纜溝蓋板》團體標準
- 2025年中國中車集團招聘筆試參考題庫含答案解析
- 《倉庫安全管理培訓》課件
- 初中《音樂》第二單元《黃河兩岸的歌(2)》課件
評論
0/150
提交評論