版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年甘肅省武威市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.
2.
3.
4.
5.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
6.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
7.A.A.Ax
B.
C.
D.
8.A.-1
B.1
C.
D.2
9.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解10.A.6YB.6XYC.3XD.3X^211.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
12.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
13.
14.
A.
B.
C.
D.
15.
16.A.A.0
B.
C.
D.∞
17.
18.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
19.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
20.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.設(shè),則f'(x)=______.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
44.
45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
49.
50.求曲線在點(diǎn)(1,3)處的切線方程.
51.
52.
53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
54.求微分方程的通解.
55.
56.證明:
57.
58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.求在區(qū)間[0,π]上由曲線y=sinx與y=0所圍成的圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積Vx。
62.
63.求曲線在點(diǎn)(1,3)處的切線方程.
64.求微分方程xy'-y=x2的通解.
65.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’
66.
67.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。
68.
69.設(shè)z=z(x,y)由方程z3y-xz-1=0確定,求出。
70.求微分方程y"+4y=e2x的通解。
五、高等數(shù)學(xué)(0題)71.計(jì)算
六、解答題(0題)72.
參考答案
1.D
2.D
3.C
4.C
5.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
6.D
7.D
8.A
9.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見(jiàn)的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒(méi)有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
10.D
11.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
12.B
13.C
14.D
故選D.
15.C
16.A本題考查的知識(shí)點(diǎn)為“有界變量與無(wú)窮小量的乘積為無(wú)窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問(wèn)題中的所給條件.
17.A解析:
18.D
19.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
20.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
21.
22.
23.x+2y-z-2=0
24.
解析:
25.
26.1.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
27.
本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)
28.
29.(-33)(-3,3)解析:
30.
本題考查了交換積分次序的知識(shí)點(diǎn)。
31.
32.e2
33.(00)
34.
本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
35.x=2x=2解析:
36.(-∞.2)
37.-sinx
38.
39.0.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
40.-ln(3-x)+C-ln(3-x)+C解析:
41.
42.
43.函數(shù)的定義域?yàn)?/p>
注意
44.由一階線性微分方程通解公式有
45.由等價(jià)無(wú)窮小量的定義可知
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
47.由二重積分物理意義知
48.
49.
50.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.
52.
53.
54.
55.
56.
57.
則
58.
59.
列表:
說(shuō)明
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
64.將方程化為標(biāo)準(zhǔn)形式本題考查的知識(shí)點(diǎn)為求解一階線性微分方程.
求解一階線性微分方程??梢圆捎脙煞N解法:
65.本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.
解法1將所給方程兩端關(guān)于x求導(dǎo),可得
解法2
y=y(tǒng)(x)由方程F(x,y)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版投資協(xié)議補(bǔ)充協(xié)議:產(chǎn)業(yè)鏈整合投資合作補(bǔ)充協(xié)議3篇
- 2025年度個(gè)性化定制汽車(chē)租賃合同書(shū)4篇
- 二零二五版漫畫(huà)連載網(wǎng)絡(luò)平臺(tái)版權(quán)合作協(xié)議4篇
- 2025年汕尾貨車(chē)從業(yè)資格證考什么
- 2025年食堂承包經(jīng)營(yíng)食品安全風(fēng)險(xiǎn)評(píng)估與防控合同3篇
- 二零二五年度城市公交車(chē)輛掛靠經(jīng)營(yíng)許可合同4篇
- 二零二五年度廠房污水處理及排放合同匯編3篇
- 二零二五年度土地儲(chǔ)備項(xiàng)目規(guī)劃設(shè)計(jì)合同
- 2025版住宅小區(qū)物業(yè)維修基金管理合同法律指引3篇
- 二零二五年度外聘演員數(shù)字人形象授權(quán)合同樣本
- 2025年溫州市城發(fā)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2025年中小學(xué)春節(jié)安全教育主題班會(huì)課件
- 2025版高考物理復(fù)習(xí)知識(shí)清單
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 2025年度安全檢查計(jì)劃
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 全球半導(dǎo)體測(cè)試探針行業(yè)市場(chǎng)研究報(bào)告2024
- 反走私課件完整版本
- 2024年注冊(cè)計(jì)量師-一級(jí)注冊(cè)計(jì)量師考試近5年真題附答案
- 2023年四川省樂(lè)山市中考數(shù)學(xué)試卷
- 【可行性報(bào)告】2023年電動(dòng)自行車(chē)行業(yè)項(xiàng)目可行性分析報(bào)告
評(píng)論
0/150
提交評(píng)論