下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省曲靖市市麒麟?yún)^(qū)三寶鎮(zhèn)第二中學2022-2023學年高三數(shù)學理上學期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.一個數(shù)學興趣小組有女同學2名,男同學3名,現(xiàn)從這個數(shù)學興趣小組中任選2名同學參加數(shù)學競賽,其中男同學人數(shù)不少于女同學人數(shù)的概率為()A.
B.
C.
D.參考答案:D略2.已知定義在上的奇函數(shù)滿足(其中),且在區(qū)間上是減函數(shù),令,,則 ()A. B.C. D. 參考答案:C略3.設集合,則=(
)A.
B.
C.
D.R參考答案:B4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為(
)A.
B.
C. D.
參考答案:B5.已知集合,,則
A.[1,2]
B.[0,2]
C.[-1,1]
D.(0,2)參考答案:B6.如圖,設向量,,若=λ+μ,且λ≥μ≥1,則用陰影表示C點所有可能的位置區(qū)域正確的是(
)參考答案:D7.已知是常數(shù),函數(shù)的導函數(shù)的圖像如圖所示,則函數(shù)的圖像可能是(
)參考答案:D8.已知曲線上任一點P(x0,f(x0)),在點P處的切線與x,y軸分別交于A,B兩點,若△OAB的面積為4,則實數(shù)a的值為()A.1 B.2 C.4 D.8參考答案:B【考點】利用導數(shù)研究曲線上某點切線方程.【分析】利用導數(shù)法確定切線方程y﹣=﹣(x﹣x0),從而解出點A,B的坐標,利用面積建立方程求出a的值.【解答】解:∵,∴f′(x)=﹣,故f′(x0)=﹣,故直線l的方程為y﹣=﹣(x﹣x0),令x=0得,y=,令y=0得,x=2x0,故S=??2x0=4,∴a=2故選B.9.已知復數(shù)z滿足(1﹣i)z=i2015(其中i為虛數(shù)單位),則的虛部為()A. B.﹣ C.i D.﹣i參考答案:A考點:復數(shù)代數(shù)形式的乘除運算;復數(shù)的基本概念.專題:數(shù)系的擴充和復數(shù).分析:利用復數(shù)的運算法則、共軛復數(shù)、虛部的定義即可得出.解答:解:∵i4=1,∴i2015=(i4)503?i3=﹣i,∴(1﹣i)z=i2015=﹣i,∴==,∴=,則的虛部為.故選:A.點評:本題考查了復數(shù)的運算法則、共軛復數(shù)、虛部的定義,屬于基礎題.10.雙曲線的左、右焦點分別為,,點在其右支上,且滿足,,則橫坐標的值是___________參考答案:4026略二、填空題:本大題共7小題,每小題4分,共28分11.在等差數(shù)列中,,則數(shù)列的前5項和=
。參考答案:9012.在四邊形中,,,則
參考答案:-113.若圓x2+y2=4上有且只有四個點到直線12x-5y+c=0的距離等于1,則實數(shù)c的取值范圍是
.參考答案:14.設函數(shù)的反函數(shù)為,則方程的解為____________。參考答案:2略15.已知展開式中第4項為常數(shù)項,則展開式的各項的系數(shù)和為
參考答案:答案:16.觀察下列等式:1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15 13=1
…13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225 …可以推測:13+23+33+…+n3=
(n∈N*,用含有n的代數(shù)式表示).
參考答案:17.如圖,在三棱錐P-ABC中,PC⊥平面ABC,,已知,,則當最大時,三棱錐P-ABC的表面積為
.參考答案:
三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知點(1,2)是函數(shù)的圖象上一點,數(shù)列的前n項和.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)將數(shù)列前2013項中的第3項,第6項,…,第3k項刪去,求數(shù)列前2013項中剩余項的和.參考答案:解:(Ⅰ)把點(1,2)代入函數(shù),得.……(1分)
…………(2分)
當時,…………………(3分)
當時,
……………(5分)
經(jīng)驗證可知時,也適合上式,
.…………(6分)(Ⅱ)由(Ⅰ)知數(shù)列為等比數(shù)列,公比為2,故其第3項,第6項,…,第2013項也為等比數(shù)列,首項公比為其第671項………………(8分)
∴此數(shù)列的和為……(10分)
又數(shù)列的前2013項和為
…………………(11分)
∴所求剩余項的和為…(12分)
略19.已知函數(shù).(Ⅰ)當時,求的極值;
(Ⅱ)當時,討論的單調(diào)性;(Ⅲ)若對任意的恒有成立,求實數(shù)的取值范圍.參考答案:解:(1)當時,∴
在上是減函數(shù),在上是增函數(shù)
∴
的極小值為,無極大值
(2)
①
當時,在和上是減函數(shù),在上是增函數(shù);
②
當時,在上是減函數(shù);
③
當時,在和上是減函數(shù),在上是增函數(shù)(3)當時,由(2)可知在上是減函數(shù),∴
由對任意的恒成立,∴
即對任意恒成立,
即對任意恒成立,
由于當時,,
∴
略20.已知函數(shù)p(x)=lnx﹣x+4,q(x)=.(1)若函數(shù)y=p(x),y=q(x)的圖象有平行于坐標軸的公切線,求a的值;(2)若關于x的不等式p(x)﹣4<q(x)的解集中有且只有兩個整數(shù),求a的取值范圍.參考答案:【考點】6H:利用導數(shù)研究曲線上某點切線方程.【分析】(1)求出函數(shù)的導數(shù),求出切線斜率,得到關于a的方程,解出即可;(2)分離參數(shù)a,令,求出函數(shù)的導數(shù),求出函數(shù)的最小值,從而求出a的范圍即可.【解答】解:(1)由題知p'(x)=q'(x),即,當x=1£?p'(1)=q'(1)=0,即x=1是y=p(x),y=q(x)的極值點,所以公切線的斜率為0,所以p(1)=q(1),lnl﹣1+4=ae,可得.(2)p(x)﹣4>q(x)等價于,令,則,令φ(x)=x﹣lnx﹣1,則,即φ(x)在(0,1)上單調(diào)遞減,(1,+∞)單調(diào)遞增.φ(x)min=φ(1)=0,∴φ(x)≥0恒成立,所以h(x)在(0,1)上單調(diào)遞減,(1,+∞)單調(diào)遞增.,因為解集中有且只有兩個整數(shù).21.如圖,已知點F(0,1),直線m:y=﹣1,P為平面上的動點,過點P作m的垂線,垂足為點Q,且.(1)求動點P的軌跡C的方程;(2)(理)過軌跡C的準線與y軸的交點M作直線m′與軌跡C交于不同兩點A、B,且線段AB的垂直平分線與y軸的交點為D(0,y0),求y0的取值范圍;(3)(理)對于(2)中的點A、B,在y軸上是否存在一點D,使得△ABD為等邊三角形?若存在,求出點D的坐標;若不存在,請說明理由.參考答案:考點:直線與圓錐曲線的綜合問題;圓錐曲線的軌跡問題.專題:圓錐曲線中的最值與范圍問題.分析:(1)設P(x,y),由題意得Q(x,﹣1),即可得到,,,,利用向量的數(shù)量積運算即可得出動點P的軌跡C的方程;(2)利用(1)的軌跡方程即可得到準線方程及點M的坐標,設直線m'的方程為y=kx﹣1(k≠0),與拋物線方程聯(lián)立得到根與系數(shù)的關系,利用中點坐標和垂直平分線的性質(zhì)即可得到線段AB的垂直平分線的方程即可;(3)利用(2)的結論,點到直線的距離公式及等邊三角形的判定即可得出.解答:解:(1)設P(x,y),由題意,Q(x,﹣1),,,,,由,得2(y+1)=x2﹣2(y﹣1),化簡得x2=4y.所以,動點P的軌跡C的方程為x2=4y.(2)軌跡C為拋物線,準線方程為y=﹣1,即直線m,∴M(0,﹣1),設直線m'的方程為y=kx﹣1(k≠0),由得x2﹣4kx+4=0,由△=16k2﹣16>0,得k2>1.設A(x1,y1),B(x2,y2),則x1+x2=4k,所以線段AB的中點為(2k,2k2﹣1),所以線段AB垂直平分線的方程為(x﹣2k)+k[y﹣(2k2﹣1)]=0,令x=0,得.因為k2>1,所以y0∈(3,+∞).(3)由(2),x1+x2=4k,x1x2=4,∴===.假設存在點D(0,y0),使得△ABD為等邊三角形,則D到直線AB的距離.因為D(0,2k2+1),所以,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年四川貨運從業(yè)資格考試模擬考試題目答案
- 2025加工承攬合同書
- 洛陽文化旅游職業(yè)學院《電氣系統(tǒng)仿真》2023-2024學年第一學期期末試卷
- 2025汽車及運輸合同書
- 建筑加固灰工施工合同
- 2024年書畫藝術品交易合同3篇
- 環(huán)保公司水電節(jié)能措施
- 2024事業(yè)單位臨時工聘任合同模板:后勤保障服務2篇
- 知識產(chǎn)權投資與融資
- 2025捐贈合同 標準版模板全
- 海警法智慧樹知到答案章節(jié)測試2023年大連海洋大學
- 手機號碼段歸屬地數(shù)據(jù)庫(2016年3月)
- 《借貸記賬法》教學設計
- 【試題】人教版二年級下數(shù)學暑假每日一練
- 衛(wèi)生院關于開展?jié)M意度調(diào)查工作的實施方案
- 紡織材料學選擇題
- YY/T 0916.1-2021醫(yī)用液體和氣體用小孔徑連接件第1部分:通用要求
- 醫(yī)務科工作思路(計劃)6篇
- GB/T 13912-2020金屬覆蓋層鋼鐵制件熱浸鍍鋅層技術要求及試驗方法
- GA 614-2006警用防割手套
- 智慧購物中心整體解決方案
評論
0/150
提交評論