版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省實(shí)驗(yàn)中學(xué)2020屆高三數(shù)學(xué)下學(xué)期二測(cè)4月試題文含解析河南省實(shí)驗(yàn)中學(xué)2020屆高三數(shù)學(xué)下學(xué)期二測(cè)4月試題文含解析PAGE24-河南省實(shí)驗(yàn)中學(xué)2020屆高三數(shù)學(xué)下學(xué)期二測(cè)4月試題文含解析河南省實(shí)驗(yàn)中學(xué)2020屆高三數(shù)學(xué)下學(xué)期二測(cè)(4月)試題文(含解析)一、選擇題1。設(shè)全集,集合,,則()A. B。 C. D.【答案】A【解析】【分析】由已知中全集,根據(jù)補(bǔ)集的性質(zhì)及運(yùn)算方法,先求出,再求出其補(bǔ)集,即可求出答案?!驹斀狻咳?集合,,,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是交、并、補(bǔ)的混合運(yùn)算,其中將題目中的集合用列舉法表示出來,是解答本題的關(guān)鍵。2.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B。 C.1 D。3【答案】A【解析】【分析】根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值。【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A?!军c(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題。3。設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C。是奇函數(shù) D。是奇函數(shù)【答案】C【解析】【分析】根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.4。在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B。①③④ C。②④ D.①③【答案】A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為所有函數(shù)為①②③。本題選擇A選項(xiàng)。點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.5。一個(gè)正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.【答案】D【解析】【詳解】試題分析:如圖所示,截去部分是正方體的一個(gè)角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D??键c(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算。6.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.【答案】B【解析】【分析】根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解?!驹斀狻扛鶕?jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題。7.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A。 B。C。 D。【答案】B【解析】【詳解】選B??键c(diǎn):圓心坐標(biāo)8。正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A。 B。1 C. D.2【答案】B【解析】【分析】根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得。【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.9。設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C。 D.【答案】C【解析】【分析】求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.10.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐的體積的最大值為36,則球的表面積為()A. B。 C。 D.【答案】C【解析】【分析】如圖所示,當(dāng)平面時(shí),三棱錐的體積最大,求出的值,再代入球的表面積公式,即可得答案。【詳解】如圖所示,當(dāng)平面時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積.故選:C.【點(diǎn)睛】本題考查球的表面積和錐體的體積計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力.11.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.【答案】C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.12。已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A。2 B.3 C。5 D.8【答案】D【解析】【分析】畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出?!驹斀狻拷猓汉瘮?shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.二、填空題13。已知命題:,,那么是__________?!敬鸢浮空婷}【解析】【分析】由冪函數(shù)的單調(diào)性進(jìn)行判斷即可?!驹斀狻恳阎}:,,因?yàn)樵谏蠁握{(diào)遞增,則,所以是真命題,故答案為:真命題【點(diǎn)睛】本題主要考查了判斷全稱命題的真假,屬于基礎(chǔ)題。14.如圖,為測(cè)量出高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得.已知山高,則山高_(dá)_________.【答案】150【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為150.考點(diǎn):正弦定理的應(yīng)用.15.設(shè)滿足約束條件且的最小值為7,則=_________。【答案】3【解析】【分析】根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對(duì)參數(shù)a分類討論,當(dāng)時(shí)顯然不滿足題意;當(dāng)時(shí),直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒有最小值,即z沒有最小值;當(dāng)時(shí),的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果。詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時(shí).故答案為3.【點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對(duì)參數(shù)進(jìn)行討論。16。已知為偶函數(shù),當(dāng)時(shí),,則曲線在點(diǎn)處的切線方程是_________.【答案】【解析】試題分析:當(dāng)時(shí),,則.又因?yàn)闉榕己瘮?shù),所以,所以,則,所以切線方程為,即.【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)時(shí),函數(shù),則當(dāng)時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)為偶函數(shù),則當(dāng)時(shí),函數(shù)的解析式為;若為奇函數(shù),則函數(shù)的解析式為.三、解答題17。已知是遞增的等差數(shù)列,,是方程的根。(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.【答案】(1);(2)?!窘馕觥俊痉治觥浚?)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法"、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3。由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1。(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-。考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法"、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.18.為了整頓道路交通秩序,某地考慮將對(duì)行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機(jī)選取了200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如表數(shù)據(jù):處罰金額(單位:元)5101520會(huì)闖紅燈的人數(shù)50402010若用表中數(shù)據(jù)所得頻率代替概率.(1)當(dāng)罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?(2)將選取的200人中會(huì)闖紅燈的市民分為兩類:類市民在罰金不超過10元時(shí)就會(huì)改正行為;類是其他市民。現(xiàn)對(duì)類與類市民按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類市民的概率是多少?【答案】(1)降低(2)【解析】【分析】(1)計(jì)算出罰金定為10元時(shí)行人闖紅燈的概率,和不進(jìn)行處罰時(shí)行人闖紅燈的概率,求解即可;(2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據(jù)分層抽樣法抽出4人依次排序,計(jì)算所求的概率值.【詳解】解:(1)當(dāng)罰金定為10元時(shí),行人闖紅燈的概率為;不進(jìn)行處罰,行人闖紅燈的概率為;所以當(dāng)罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低;(2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40人故分別從類市民和類市民各抽出兩人,4人依次排序記類市民中抽取的兩人對(duì)應(yīng)的編號(hào)為,類市民中抽取的兩人編號(hào)為則4人依次排序分別為,,,,,,,,,,,,共有種前兩位均為類市民排序?yàn)椋?,有種,所以前兩位均為類市民的概率是.【點(diǎn)睛】本題主要考查了計(jì)算古典概型的概率,屬于中檔題。19.如圖,矩形和梯形所在平面互相垂直,,,。(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.【答案】(1)見解析(2)【解析】【分析】(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面。(2)取中點(diǎn)為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點(diǎn)睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補(bǔ)形法、等體積法.①割補(bǔ)法:求一些不規(guī)則幾何體的體積時(shí),常用割補(bǔ)法轉(zhuǎn)化成已知體積公式的幾何體進(jìn)行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時(shí),這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計(jì)算得到高的數(shù)值.20。已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍?!敬鸢浮浚?)答案不唯一,具體見解析(2)【解析】【分析】(1)分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間。(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當(dāng)時(shí),由,得.由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當(dāng)時(shí),由,得由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當(dāng)時(shí),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價(jià)于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當(dāng)時(shí),;當(dāng)時(shí),當(dāng)變化時(shí),,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當(dāng)時(shí),取得最大值,,∴.∴的取值范圍是.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究不等式的恒成立問題,屬于中檔題.21.過點(diǎn)P(-4,0)動(dòng)直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時(shí),。(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍。【答案】;【解析】【分析】根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線C的方程;設(shè),的中點(diǎn)為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可?!驹斀狻坑深}意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設(shè),由韋達(dá)定理可得,,因?yàn)?,所以,解得,所以拋物線C的方程為;設(shè),的中點(diǎn)為,由,消去可得,所以判別式,解得或,由韋達(dá)定理可得,,所以的中垂線方程為,令則,因?yàn)榛?,所以即為所求?!军c(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的位置關(guān)系,考查向量知識(shí)的運(yùn)用;考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力;屬于中檔題。[選修4—4:坐標(biāo)系與參數(shù)方程]22.平面直角坐標(biāo)系中,曲線:。直線經(jīng)過點(diǎn),且傾斜角為,以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點(diǎn),且,求實(shí)數(shù)的值.【答案】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 15896-2024化學(xué)試劑甲酸
- 卸船行業(yè)營銷策略方案
- 電視發(fā)射器項(xiàng)目營銷計(jì)劃書
- 電照明裝置項(xiàng)目營銷計(jì)劃書
- 砂紙卷市場(chǎng)分析及投資價(jià)值研究報(bào)告
- 磁性編碼器產(chǎn)品供應(yīng)鏈分析
- 壓力水箱產(chǎn)品供應(yīng)鏈分析
- 襯衫式外套項(xiàng)目運(yùn)營指導(dǎo)方案
- 化妝品用散沫花產(chǎn)品供應(yīng)鏈分析
- 上衣產(chǎn)品供應(yīng)鏈分析
- 財(cái)務(wù)會(huì)計(jì)學(xué)中國人民大學(xué)商學(xué)院會(huì)計(jì)系戴德明
- 第五章 第1講 開普勒三定律與萬有引力定律-2025高三總復(fù)習(xí) 物理(新高考)
- 新質(zhì)生產(chǎn)力賦能職業(yè)教育高質(zhì)量發(fā)展
- 學(xué)習(xí)動(dòng)機(jī)的干預(yù)策略研究
- 2024年云南省中考英語試卷附答案
- 2024年保育員考試題庫加解析答案
- 語文 職業(yè)模塊語文綜合實(shí)踐教學(xué)課件(講好勞模故事 學(xué)習(xí)勞模精神)
- 醫(yī)院疏散逃生講解
- 【短視頻平臺(tái)商品營銷策略探究:以抖音為例8800字(論文)】
- 2024年保險(xiǎn)考試-車險(xiǎn)查勘定損員筆試參考題庫含答案
- 國企市場(chǎng)化轉(zhuǎn)型方案
評(píng)論
0/150
提交評(píng)論