版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
會計學(xué)1李子奈計量經(jīng)濟(jì)學(xué)配套一元線性回歸參數(shù)估計單方程計量經(jīng)濟(jì)學(xué)模型分為兩大類:
線性模型和非線性模型線性模型中,變量之間的關(guān)系呈線性關(guān)系非線性模型中,變量之間的關(guān)系呈非線性關(guān)系
一元線性回歸模型:只有一個解釋變量
i=1,2,…,nY為被解釋變量,X為解釋變量,0與1為待估參數(shù),為隨機(jī)干擾項第1頁/共29頁
回歸分析的主要目的是要通過樣本回歸函數(shù)(模型)SRF盡可能準(zhǔn)確地估計總體回歸函數(shù)(模型)PRF。
估計方法有多種,其種最廣泛使用的是普通最小二乘法(ordinaryleastsquares,OLS)。
為保證參數(shù)估計量具有良好的性質(zhì),通常對模型提出若干基本假設(shè)。
注:實際這些假設(shè)與所采用的估計方法緊密相關(guān)。
第2頁/共29頁
一、線性回歸模型的基本假設(shè)
假設(shè)1、解釋變量X是確定性變量,不是隨機(jī)變量;
假設(shè)2、隨機(jī)誤差項具有零均值、同方差和不序列相關(guān)性:
E(i)=0i=1,2,…,nVar(i)=2i=1,2,…,nCov(i,j)=0i≠ji,j=1,2,…,n
假設(shè)3、隨機(jī)誤差項與解釋變量X之間不相關(guān):
Cov(Xi,i)=0i=1,2,…,n
假設(shè)4、服從零均值、同方差、零協(xié)方差的正態(tài)分布i~N(0,2)i=1,2,…,n第3頁/共29頁1、如果假設(shè)1、2滿足,則假設(shè)3也滿足;
2、如果假設(shè)4滿足,則假設(shè)2也滿足。注意:
以上假設(shè)也稱為線性回歸模型的經(jīng)典假設(shè)或高斯(Gauss)假設(shè),滿足該假設(shè)的線性回歸模型,也稱為經(jīng)典線性回歸模型(ClassicalLinearRegressionModel,CLRM)。
第4頁/共29頁
另外,在進(jìn)行模型回歸時,還有兩個暗含的假設(shè):
假設(shè)5:隨著樣本容量的無限增加,解釋變量X的樣本方差趨于一有限常數(shù)。即
假設(shè)6:回歸模型是正確設(shè)定的
假設(shè)5旨在排除時間序列數(shù)據(jù)出現(xiàn)持續(xù)上升或下降的變量作為解釋變量,因為這類數(shù)據(jù)不僅使大樣本統(tǒng)計推斷變得無效,而且往往產(chǎn)生所謂的偽回歸問題(spuriousregressionproblem)。假設(shè)6也被稱為模型沒有設(shè)定偏誤(specificationerror)第5頁/共29頁二、參數(shù)的普通最小二乘估計(OLS)
給定一組樣本觀測值(Xi,Yi)(i=1,2,…n)要求樣本回歸函數(shù)盡可能好地擬合這組值.
普通最小二乘法(Ordinaryleastsquares,OLS)給出的判斷標(biāo)準(zhǔn)是:二者之差的平方和最小。第6頁/共29頁方程組(*)稱為正規(guī)方程組(normalequations)。
第7頁/共29頁記上述參數(shù)估計量可以寫成:
稱為OLS估計量的離差形式(deviationform)。由于參數(shù)的估計結(jié)果是通過最小二乘法得到的,故稱為普通最小二乘估計量(ordinaryleastsquaresestimators)。
第8頁/共29頁順便指出,記則有
可得
(**)式也稱為樣本回歸函數(shù)的離差形式。(**)注意:在計量經(jīng)濟(jì)學(xué)中,往往以小寫字母表示對均值的離差。
第9頁/共29頁
三、參數(shù)估計的最大或然法(ML)
最大或然法(MaximumLikelihood,簡稱ML),也稱最大似然法,是不同于最小二乘法的另一種參數(shù)估計方法,是從最大或然原理出發(fā)發(fā)展起來的其它估計方法的基礎(chǔ)。
基本原理:對于最大或然法,當(dāng)從模型總體隨機(jī)抽取n組樣本觀測值后,最合理的參數(shù)估計量應(yīng)該使得從模型中抽取該n組樣本觀測值的概率最大。第10頁/共29頁在滿足基本假設(shè)條件下,對一元線性回歸模型:
隨機(jī)抽取n組樣本觀測值(Xi,Yi)(i=1,2,…n)。
那么Yi服從如下的正態(tài)分布:于是,Y的概率密度函數(shù)為(i=1,2,…n)
假如模型的參數(shù)估計量已經(jīng)求得,為第11頁/共29頁因為Yi是相互獨立的,所以的所有樣本觀測值的聯(lián)合概率,也即或然函數(shù)(likelihoodfunction)為:
將該或然函數(shù)極大化,即可求得到模型參數(shù)的極大或然估計量。第12頁/共29頁
由于或然函數(shù)的極大化與或然函數(shù)的對數(shù)的極大化是等價的,所以,取對數(shù)或然函數(shù)如下:第13頁/共29頁解得模型的參數(shù)估計量為:
可見,在滿足一系列基本假設(shè)的情況下,模型結(jié)構(gòu)參數(shù)的最大或然估計量與普通最小二乘估計量是相同的。第14頁/共29頁
例2.2.1:在上述家庭可支配收入-消費支出例中,對于所抽出的一組樣本數(shù),參數(shù)估計的計算可通過下面的表2.2.1進(jìn)行。
第15頁/共29頁因此,由該樣本估計的回歸方程為:
第16頁/共29頁
四、最小二乘估計量的性質(zhì)
當(dāng)模型參數(shù)估計出后,需考慮參數(shù)估計值的精度,即是否能代表總體參數(shù)的真值,或者說需考察參數(shù)估計量的統(tǒng)計性質(zhì)。
一個用于考察總體的估計量,可從如下幾個方面考察其優(yōu)劣性:
(1)線性性,即它是否是另一隨機(jī)變量的線性函數(shù);
(2)無偏性,即它的均值或期望值是否等于總體的真實值;
(3)有效性,即它是否在所有線性無偏估計量中具有最小方差。第17頁/共29頁(4)漸近無偏性,即樣本容量趨于無窮大時,是否它的均值序列趨于總體真值;(5)一致性,即樣本容量趨于無窮大時,它是否依概率收斂于總體的真值;(6)漸近有效性,即樣本容量趨于無窮大時,是否它在所有的一致估計量中具有最小的漸近方差。
這三個準(zhǔn)則也稱作估計量的小樣本性質(zhì)。擁有這類性質(zhì)的估計量稱為最佳線性無偏估計量(bestlinerunbiasedestimator,BLUE)。
當(dāng)不滿足小樣本性質(zhì)時,需進(jìn)一步考察估計量的大樣本或漸近性質(zhì):第18頁/共29頁高斯—馬爾可夫定理(Gauss-Markovtheorem)
在給定經(jīng)典線性回歸的假定下,最小二乘估計量是具有最小方差的線性無偏估計量。第19頁/共29頁證:易知故同樣地,容易得出
第20頁/共29頁第21頁/共29頁(2)證明最小方差性其中,ci=ki+di,di為不全為零的常數(shù)則容易證明
普通最小二乘估計量(ordinaryleastSquaresEstimators)稱為最佳線性無偏估計量(bestlinearunbiasedestimator,BLUE)
第22頁/共29頁
由于最小二乘估計量擁有一個“好”的估計量所應(yīng)具備的小樣本特性,它自然也擁有大樣本特性。
第23頁/共29頁
五、參數(shù)估計量的概率分布及隨機(jī)干擾項方差的估計
第24頁/共29頁第25頁/共29頁2、隨機(jī)誤差項的方差2的估計
由于隨機(jī)項i不可觀測,只
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技驅(qū)動的金融產(chǎn)品創(chuàng)新模式研究
- 二零二五年度電影電視劇演員合同簽訂與執(zhí)行協(xié)議
- 小學(xué)勞動教育與節(jié)日文化的融合實踐
- 小學(xué)科學(xué)課程的創(chuàng)新設(shè)計與實施策略
- 二零二五年度美容院美容師健康管理與保險勞務(wù)合同范本
- 二零二五年度消防器材研發(fā)與技術(shù)創(chuàng)新基金投資合同
- 2025年度二零二五年度道路工程竣工驗收合同簡版
- 綠色校園規(guī)劃生態(tài)友好型校園建設(shè)策略與實踐
- 家庭生活與小學(xué)生學(xué)習(xí)習(xí)慣的養(yǎng)成
- 疫情后的市場新常態(tài)與小微企業(yè)應(yīng)對策略
- 2025年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
- 商務(wù)部發(fā)布《中國再生資源回收行業(yè)發(fā)展報告(2024)》
- 山東省濟(jì)南市2024-2024學(xué)年高三上學(xué)期1月期末考試 地理 含答案
- 2025年福建新華發(fā)行(集團(tuán))限責(zé)任公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 江蘇省駕??荚嚳颇恳豢荚囶}庫
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學(xué)2023-2024學(xué)年七上期末數(shù)學(xué)試題(解析版)
- 咨詢公司績效工資分配實施方案
- 2025新人教版英語七年級下單詞表
- 中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)-氣管切開非機(jī)械通氣患者氣道護(hù)理
- 未成年入職免責(zé)協(xié)議書
- 光伏電站巡檢專項方案
評論
0/150
提交評論