版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年山西省運城市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx
2.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
3.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
4.A.A.3B.1C.1/3D.0
5.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
6.A.A.
B.B.
C.C.
D.D.
7.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln2
8.以下結(jié)論正確的是().
A.
B.
C.
D.
9.
10.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
11.。A.2B.1C.-1/2D.0
12.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
13.()。A.
B.
C.
D.
14.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面15.A.3B.2C.1D.1/2
16.
A.0B.2C.4D.8
17.
18.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
19.20.微分方程y'+x=0的通解()。A.
B.
C.
D.
21.
22.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
23.
24.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
25.
26.等于().A.A.0
B.
C.
D.∞
27.
28.設(shè)曲線y=x-ex在點(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-129.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
30.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
31.
32.
33.
34.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
35.
()A.x2
B.2x2
C.xD.2x36.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值37.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
38.()。A.-2B.-1C.0D.239.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
40.
41.
42.
43.
44.
45.
46.“目標的可接受性”可以用()來解釋。
A.公平理論B.雙因素理論C.期望理論D.強化理論47.A.A.0B.1C.2D.不存在48.A.A.0B.1C.2D.349.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
50.()A.A.1B.2C.1/2D.-1二、填空題(20題)51.
52.53.54.
55.曲線y=x3-3x+2的拐點是__________。
56.57.58.
59.函數(shù)f(x)=xe-x的極大值點x=__________。
60.
61.62.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則63.
64.
65.
66.
67.
68.
69.
70.
三、計算題(20題)71.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.72.73.證明:74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.75.求曲線在點(1,3)處的切線方程.76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.77.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.79.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.將f(x)=e-2X展開為x的冪級數(shù).82.
83.
84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
85.求微分方程的通解.
86.
87.
88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)91.
92.93.
94.
95.
96.所圍成的平面區(qū)域。
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.
=()。
A.∞
B.0
C.
D.
六、解答題(0題)102.求微分方程y"-3y'+2y=0的通解。
參考答案
1.B
2.A本題考查的知識點為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
3.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
4.A
5.B本題考查的知識點為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
6.B本題考查了已知積分函數(shù)求原函數(shù)的知識點
7.C
8.C
9.D
10.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
11.A
12.C
13.C由不定積分基本公式可知
14.C本題考查的知識點為二次曲面的方程。
將x2+y2-z=0與二次曲面標準方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
15.B,可知應(yīng)選B。
16.A解析:
17.C解析:
18.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
19.C
20.D所給方程為可分離變量方程.
21.B解析:
22.A
23.B
24.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
25.D解析:
26.A
27.C
28.C本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(0,-1)處切線斜率為0,因此選C.
29.DA,∫1+∞xdx==∞發(fā)散;
30.A由方程知,其特征方程為,r2-2=0,有兩個特征根r=±.又自由項f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.
31.A
32.D
33.A
34.D本題考查的知識點為偏導(dǎo)數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。
35.A
36.A本題考查的知識點為導(dǎo)數(shù)的定義.
37.A本題考查的知識點為不定積分運算.
可知應(yīng)選A.
38.A
39.D
40.C解析:
41.D
42.A解析:
43.C
44.C
45.B
46.C解析:目標的可接受性可用期望理論來理解。
47.C本題考查的知識點為左極限、右極限與極限的關(guān)系.
48.B
49.B本題考查的知識點為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.
50.C由于f'(2)=1,則
51.
52.
53.0本題考查了利用極坐標求二重積分的知識點.54.1/2
本題考查的知識點為計算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
55.(02)
56.
57.58.本題考查的知識點為定積分的基本公式。
59.1
60.(e-1)2
61.62.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
63.
本題考查的知識點為微分的四則運算.
注意若u,v可微,則
64.y=0
65.1/24
66.2
67.
68.00解析:
69.
70.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
71.
72.
73.
74.由二重積分物理意義知
75.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
76.
77.
78.
列表:
說明
79.
80.函數(shù)的定義域為
注意
81.
82.
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
85.
86.
87.
則
88.由一階線性微分方程通解公式有
89.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考化學(xué)一輪復(fù)習(xí)專練12鈉及其化合物含解析新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第一部分考點11硫及其化合物強化訓(xùn)練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)課練15常見有機物的組成和性質(zhì)含解析
- 2024高考歷史一輪復(fù)習(xí)方案專題四世界政治制度的演變與發(fā)展專題整合備考提能教學(xué)案+練習(xí)人民版
- 小學(xué)2024-2025學(xué)年度第二學(xué)期心理健康教研計劃
- 勞務(wù)隊安全管理制度
- 市政排水管道工程質(zhì)量通病
- 2024年渤海石油職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 高二歷史西歐一體化進程
- 二零二五年橙子產(chǎn)品溯源體系建設(shè)合同3篇
- 中建三局項目目標責(zé)任成本測算培訓(xùn)資料
- 2024至2030年中國MVR蒸汽機械行業(yè)全景調(diào)研及投資前景展望報告
- 2024年中考物理一輪復(fù)習(xí) 物態(tài)變化 講義(4考點+13考向)
- 食品安全追溯管理制度2024
- 中國大唐筆試題庫
- 2024版第三方代付協(xié)議模板
- 育嬰師服務(wù)合同協(xié)議書(2024版)
- 情侶分手經(jīng)濟協(xié)議書范本
- 定位合作協(xié)議范本
- 家庭成員及主要社會關(guān)系情況表
- 高效協(xié)同-培訓(xùn)課件
評論
0/150
提交評論