版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
2.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
3.
4.A.1B.0C.2D.1/2
5.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無(wú)窮小B.較低階無(wú)窮小C.較高階無(wú)窮小D.同階但不等價(jià)的無(wú)窮小
6.
7.
8.曲線y=x+(1/x)的凹區(qū)間是
A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)
9.
A.2B.1C.1/2D.0
10.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.4
11.
12.
13.
14.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
15.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)
16.
17.A.A.較高階的無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.較低階的無(wú)窮小量
18.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
19.A.0或1B.0或-1C.0或2D.1或-1
20.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
二、填空題(20題)21.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
22.
23.
24.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.設(shè)函數(shù)f(x)有一階連續(xù)導(dǎo)數(shù),則∫f'(x)dx=_________。
36.設(shè)=3,則a=________。
37.
38.
39.
40.
三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
43.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
46.
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.
49.求曲線在點(diǎn)(1,3)處的切線方程.
50.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
52.求微分方程y"-4y'+4y=e-2x的通解.
53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
55.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
56.
57.求微分方程的通解.
58.
59.
60.證明:
四、解答題(10題)61.求由曲線y=x2(x≥0),直線y=1及Y軸圍成的平面圖形的面積·
62.
63.將f(x)=1/3-x展開(kāi)為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。
64.
65.
66.設(shè)y=ln(1+x2),求dy。
67.
68.設(shè)y=x2=lnx,求dy。
69.
70.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
五、高等數(shù)學(xué)(0題)71.設(shè)函數(shù)
=___________。
六、解答題(0題)72.
參考答案
1.B
2.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
3.A解析:
4.C
5.D
6.A
7.A
8.D解析:
9.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).
10.B
11.C
12.D
13.C解析:
14.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).
15.B
16.C解析:
17.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
18.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
19.A
20.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
21.-1
22.0
23.
24.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
25.
26.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
27.
28.12x
29.
30.2x-4y+8z-7=0
31.
32.ee解析:
33.
34.
解析:
35.f(x)+C
36.
37.
38.
本題考查的知識(shí)點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).
39.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。
40.
41.由等價(jià)無(wú)窮小量的定義可知
42.
43.
則
44.函數(shù)的定義域?yàn)?/p>
注意
45.
46.
47.由二重積分物理意義知
48.
49.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.
51.
列表:
說(shuō)明
52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
53.
54.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年餐飲配送行業(yè)食品安全責(zé)任合同3篇
- 二零二五版綜合安全解決方案與保安勞務(wù)合同2篇
- 二零二五版搬家服務(wù)與物流數(shù)據(jù)共享合同樣本3篇
- 二零二五版房地產(chǎn)代理銷售合同示范文本解讀3篇
- 二零二五年度水上樂(lè)園供水及排水系統(tǒng)承包合同2篇
- 二零二五版影視制作合同:規(guī)定電影制作的流程與投資分配3篇
- 二零二五年度食堂物流配送服務(wù)合同2篇
- 二零二五年特種車輛銷售與操作培訓(xùn)服務(wù)合同3篇
- 二零二五版體育場(chǎng)館承包經(jīng)營(yíng)合同模板2篇
- 二零二五版寶鋼職工社會(huì)保障配套合同3篇
- 2024年水利工程高級(jí)工程師理論考試題庫(kù)(濃縮400題)
- 淋巴瘤病理診斷基礎(chǔ)和進(jìn)展周小鴿
- 增強(qiáng)現(xiàn)實(shí)技術(shù)在藝術(shù)教育中的應(yīng)用
- TD/T 1060-2021 自然資源分等定級(jí)通則(正式版)
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀
- 倉(cāng)庫(kù)智能化建設(shè)方案
- 海外市場(chǎng)開(kāi)拓計(jì)劃
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 七上-動(dòng)點(diǎn)、動(dòng)角問(wèn)題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
評(píng)論
0/150
提交評(píng)論