版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省太原市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)
2.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
3.A.A.2B.1C.0D.-1
4.
5.
6.
A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確
7.下列命題中正確的有()A.A.
B.
C.
D.
8.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值
9.
10.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
11.
12.
13.
14.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
15.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)16.A.1-cosxB.1+cosxC.2-cosxD.2+cosx
17.
18.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)19.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
20.平衡積分卡控制是()首創(chuàng)的。
A.戴明B.施樂公司C.卡普蘭和諾頓D.國(guó)際標(biāo)準(zhǔn)化組織21.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
22.()。A.充分必要條件B.充分非必要條件C.必要非充分條件D.既非充分也非必要條件
23.
24.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-325.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
26.
27.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
28.
29.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
30.
31.()。A.2πB.πC.π/2D.π/4
32.設(shè)函數(shù)y=(2+x)3,則y'=
A.(2+x)2
B.3(2+x)2
C.(2+x)4
D.3(2+x)4
33.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
34.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來(lái)表示,其公式為()。
A.
B.
C.
D.
35.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
36.A.A.1
B.
C.
D.1n2
37.
38.()。A.過(guò)原點(diǎn)且平行于X軸B.不過(guò)原點(diǎn)但平行于X軸C.過(guò)原點(diǎn)且垂直于X軸D.不過(guò)原點(diǎn)但垂直于X軸
39.
40.A.-cosxB.-ycosxC.cosxD.ycosx41.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
42.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
43.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
44.
45.二次積分等于()A.A.
B.
C.
D.
46.
47.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面
48.
49.當(dāng)x→0時(shí),x+x2+x3+x4為x的
A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小50.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
二、填空題(20題)51.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.
52.
53.54.55.56.設(shè),則y'=______。
57.
58.
59.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
60.過(guò)坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為______.61.設(shè)f(0)=0,f'(0)存在,則62.
63.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
64.設(shè)f(x)=sinx/2,則f'(0)=_________。
65.
66.
67.將積分改變積分順序,則I=______.
68.
69.設(shè)z=sin(x2+y2),則dz=________。
70.
三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
72.求微分方程y"-4y'+4y=e-2x的通解.
73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.75.求微分方程的通解.
76.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
77.
78.
79.
80.求曲線在點(diǎn)(1,3)處的切線方程.81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).85.證明:86.
87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
88.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則89.90.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)91.92.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.93.94.95.96.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。97.98.
99.
100.
五、高等數(shù)學(xué)(0題)101.當(dāng)x→0時(shí),tan2x是()。
A.比sin3x高階的無(wú)窮小B.比sin3x低階的無(wú)窮小C.與sin3x同階的無(wú)窮小D.與sin3x等價(jià)的無(wú)窮小六、解答題(0題)102.用洛必達(dá)法則求極限:
參考答案
1.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
2.C
3.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
4.A解析:
5.B
6.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.
7.B
8.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
9.B解析:
10.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
11.A
12.B
13.D
14.C解析:
15.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
16.D
17.B
18.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
19.D
20.C
21.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
22.C
23.D
24.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
25.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
26.A
27.A
28.D
29.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
30.A
31.B
32.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.
33.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
34.A
35.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。
36.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選C.
37.A
38.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過(guò)原點(diǎn)(或由
39.A
40.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
41.C
42.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。
43.B
44.C
45.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
46.C
47.B
48.D
49.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。
50.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
51.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識(shí)點(diǎn)。52.5.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
53.
54.
本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
55.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.56.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
57.33解析:
58.
59.π2因?yàn)椤?1f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。60.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.61.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒有給出,f'(z)(x≠0)存在,也沒有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
62.
63.
64.1/2
65.1/266.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
67.
68.
69.2cos(x2+y2)(xdx+ydy)
70.1
71.
72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
73.
74.
75.
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%77.由一階線性微分方程通解公式有
78.
79.80.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
81.
82.由二重積分物理意義知
83.函數(shù)的定義域?yàn)?/p>
注意
84.
列表:
說(shuō)明
85.
86.
則
87.
88.由等價(jià)無(wú)窮小量的定義可知
89.
90.
91.
92.本題考查的知識(shí)點(diǎn)為選擇積分次序;計(jì)算二重積分.
由于不能利用初等函數(shù)表示出來(lái),因此應(yīng)該將二重積分化為先對(duì)x積分后對(duì)y積分的二此積分.
93.
94.
95.
96.
于是由實(shí)際問題得,S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 素描室內(nèi)寫生課程設(shè)計(jì)
- 相機(jī)掛件課程設(shè)計(jì)
- 英語(yǔ)語(yǔ)言學(xué)課程設(shè)計(jì)
- 航空專業(yè)票務(wù)課程設(shè)計(jì)
- (中職中專)貿(mào)法律與案例教學(xué)設(shè)計(jì)全書電子教案整本書教案1-6章全
- 電信課程設(shè)計(jì)論文
- 糖化鍋課程設(shè)計(jì)選型
- 給水廠課程設(shè)計(jì)總結(jié)心得
- 游戲觀察課程設(shè)計(jì)
- 聯(lián)考素描課程設(shè)計(jì)考什么
- 餐飲店購(gòu)銷合同
- 文化資源數(shù)字化技術(shù)有哪些
- 2023年杭州聯(lián)合銀行校園招聘筆試歷年高頻考點(diǎn)試題答案詳解
- 灌裝軋蓋機(jī)和供瓶機(jī)設(shè)備驗(yàn)證方案
- 《國(guó)家中藥飲片炮制規(guī)范》全文
- 《鈷鉧潭西小丘記》教學(xué)設(shè)計(jì)(部級(jí)優(yōu)課)語(yǔ)文教案
- 人教版五年級(jí)下冊(cè)數(shù)學(xué)講義
- 安全工器具-變壓器絕緣油課件
- 瓦楞紙箱工藝流程演示文稿
- 神通數(shù)據(jù)庫(kù)管理系統(tǒng)v7.0企業(yè)版-3概要設(shè)計(jì)說(shuō)明書
- 安置房項(xiàng)目二次結(jié)構(gòu)磚砌體工程專項(xiàng)施工方案培訓(xùn)資料
評(píng)論
0/150
提交評(píng)論