版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省呂梁市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.
4.
5.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
6.
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
8.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
9.曲線y=ex與其過原點(diǎn)的切線及y軸所圍面積為
A.
B.
C.
D.
10.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx
11.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
12.
13.
14.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
15.
16.A.0或1B.0或-1C.0或2D.1或-1
17.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
18.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
19.
20.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸
21.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定
22.
23.
24.
25.下列說法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)
26.
27.
28.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
29.
30.為二次積分為()。A.
B.
C.
D.
31.A.A.0B.1/2C.1D.∞
32.下列函數(shù)中,在x=0處可導(dǎo)的是()
A.y=|x|
B.
C.y=x3
D.y=lnx
33.A.A.1/4B.1/2C.1D.234.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
35.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
36.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
37.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
38.
39.下列命題中正確的有().
40.A.2B.1C.1/2D.-141.()。A.2πB.πC.π/2D.π/442.
43.
44.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
45.
A.絕對(duì)收斂
B.條件收斂
C.發(fā)散
D.收斂性不能判定
46.
47.
48.人們對(duì)某一目標(biāo)的重視程度與評(píng)價(jià)高低,即人們?cè)谥饔^上認(rèn)為這種報(bào)酬的價(jià)值大小叫做()
A.需要B.期望值C.動(dòng)機(jī)D.效價(jià)
49.
50.等于().A.A.2B.1C.1/2D.0二、填空題(20題)51.
52.
53.設(shè)y=-lnx/x,則dy=_________。
54.
55.56.設(shè),則y'=______.
57.
58.
59.
60.微分方程y'=2的通解為__________。
61.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。62.63.
64.
65.=______.66.若=-2,則a=________。67.
68.
69.
70.
三、計(jì)算題(20題)71.
72.證明:73.求微分方程的通解.74.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.75.
76.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則77.78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
79.
80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.求曲線在點(diǎn)(1,3)處的切線方程.82.
83.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
84.85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.86.將f(x)=e-2X展開為x的冪級(jí)數(shù).87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.求微分方程y"+9y=0的通解。
93.
94.
95.
96.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]六、解答題(0題)102.計(jì)算
參考答案
1.D
2.C
3.A
4.C
5.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
6.C
7.B
8.D
9.A
10.B
11.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
12.B
13.D
14.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.
注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.
15.D解析:
16.A
17.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
18.D內(nèi)的概念,與f(x)在點(diǎn)x0處是否有定義無關(guān).
19.B
20.B本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
21.C
22.A解析:
23.B
24.A
25.A
26.B
27.C
28.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
29.A解析:
30.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為
故知應(yīng)選A。
31.A
32.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).
33.C
34.D
35.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
36.C
37.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
38.C
39.B解析:
40.A本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。
41.B
42.D
43.D
44.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
45.A
46.B
47.A
48.D解析:效價(jià)是指?jìng)€(gè)人對(duì)達(dá)到某種預(yù)期成果的偏愛程度,或某種預(yù)期成果可能給行為者帶來的滿足程度。
49.D
50.D本題考查的知識(shí)點(diǎn)為重要極限公式與無窮小性質(zhì).
注意:極限過程為x→∞,因此
不是重要極限形式!由于x→∞時(shí),1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知
51.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
52.-1
53.
54.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)55.156.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
57.[-11)58.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.所給級(jí)數(shù)為缺項(xiàng)情形,由于
59.3
60.y=2x+C
61.
62.(-21)(-2,1)
63.
64.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.65.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
66.因?yàn)?a,所以a=-2。
67.
68.(-22)
69.|x|
70.
71.
72.
73.
74.
75.由一階線性微分方程通解公式有
76.由等價(jià)無窮小量的定義可知
77.
78.
79.80.函數(shù)的定義域?yàn)?/p>
注意
81.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
82.
83.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
84.
85.由二重積分物理意義知
86.
87.
列表:
說明
88.
則
89.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
90.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 素描室內(nèi)寫生課程設(shè)計(jì)
- 相機(jī)掛件課程設(shè)計(jì)
- 英語語言學(xué)課程設(shè)計(jì)
- 航空專業(yè)票務(wù)課程設(shè)計(jì)
- (中職中專)貿(mào)法律與案例教學(xué)設(shè)計(jì)全書電子教案整本書教案1-6章全
- 電信課程設(shè)計(jì)論文
- 糖化鍋課程設(shè)計(jì)選型
- 給水廠課程設(shè)計(jì)總結(jié)心得
- 游戲觀察課程設(shè)計(jì)
- 聯(lián)考素描課程設(shè)計(jì)考什么
- 2025年初級(jí)會(huì)計(jì)職稱《經(jīng)濟(jì)法基礎(chǔ)》全真模擬及答案(解析3套)
- 《健康社區(qū)評(píng)價(jià)標(biāo)準(zhǔn)》
- 戶外市場(chǎng)研究報(bào)告-魔鏡洞察-202412
- 浙江省金華市金東區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期語文期末試卷
- 【7地星球期末】安徽省合肥市包河區(qū)智育聯(lián)盟校2023-2024學(xué)年七年級(jí)上學(xué)期期末地理試題(含解析)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之2:“1至3章:范圍、術(shù)語和定義”(雷澤佳編制-2025B0)
- (2021)最高法民申5114號(hào)凱某建設(shè)工程合同糾紛案 指導(dǎo)
- 【9物(人)期末】安慶市宿松縣2023-2024學(xué)年九年級(jí)上學(xué)期期末考試物理試題
- 導(dǎo)航通信一體化考核試卷
- 甘肅省會(huì)寧二中2025屆高考仿真模擬數(shù)學(xué)試卷含解析
- 2024年未成年子女房產(chǎn)贈(zèng)與協(xié)議
評(píng)論
0/150
提交評(píng)論