版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().
A.2x3
B.3x2
C.x2
D.x3
2.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
3.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。
A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移
B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷
C.當(dāng)時(shí),可近似取
D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)
4.人們對(duì)某一目標(biāo)的重視程度與評(píng)價(jià)高低,即人們?cè)谥饔^上認(rèn)為這種報(bào)酬的價(jià)值大小叫做()
A.需要B.期望值C.動(dòng)機(jī)D.效價(jià)5.滑輪半徑,一0.2m,可繞水平軸0轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律為φ=0.15t3rad,其中t單位為s。當(dāng)t-2s時(shí),輪緣上M點(diǎn)速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為VM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為VA=0.36m/s
D.物體A點(diǎn)的加速度為aA=0.36m/s2
6.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
7.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
8.
9.A.2B.1C.1/2D.-1
10.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
11.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
12.
13.
14.
15.
16.
17.
18.
19.
20.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
二、填空題(20題)21.設(shè)函數(shù)f(x)有一階連續(xù)導(dǎo)數(shù),則∫f'(x)dx=_________。
22.設(shè)x2為f(x)的一個(gè)原函數(shù),則f(x)=_____
23.
24.設(shè)y=ex,則dy=_________。
25.
26.
27.
28.
29.
30.
31.
32.設(shè),且k為常數(shù),則k=______.
33.設(shè)z=ln(x2+y),則全微分dz=__________。
34.
35.
36.
37.
38.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.
39.
40.不定積分=______.
三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.求曲線在點(diǎn)(1,3)處的切線方程.
44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
45.
46.證明:
47.
48.
49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
50.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.
54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
55.
56.求微分方程的通解.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
58.
59.
60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.求fe-2xdx。
62.證明:ex>1+x(x>0).
63.
64.求微分方程xy'-y=x2的通解.
65.
66.設(shè)有一圓形薄片x2+y2≤α2,在其上一點(diǎn)M(x,y)的面密度與點(diǎn)M到點(diǎn)(0,0)的距離成正比,求分布在此薄片上的物質(zhì)的質(zhì)量。
67.
68.
69.將f(x)=e-2x展開(kāi)為x的冪級(jí)數(shù).
70.
五、高等數(shù)學(xué)(0題)71.設(shè)
求df(t)
六、解答題(0題)72.
參考答案
1.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.
2.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
3.D
4.D解析:效價(jià)是指?jìng)€(gè)人對(duì)達(dá)到某種預(yù)期成果的偏愛(ài)程度,或某種預(yù)期成果可能給行為者帶來(lái)的滿足程度。
5.B
6.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
7.D解析:
8.D
9.A本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。
10.B?
11.A
12.A
13.A
14.B
15.C
16.D
17.D
18.C解析:
19.B
20.D
21.f(x)+C
22.由原函數(shù)的概念可知
23.12dx+4dy.
本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
24.exdx
25.
26.
27.1.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
28.
29.
30.
本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
31.
32.
本題考查的知識(shí)點(diǎn)為廣義積分的計(jì)算.
33.
34.
解析:
35.
36.
37.
38.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
39.3x2
40.
;本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
41.
列表:
說(shuō)明
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
43.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
44.由等價(jià)無(wú)窮小量的定義可知
45.
46.
47.
48.
49.
50.
51.
52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
53.
54.由二重積分物理意義知
55.由一階線性微分方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 口譯就餐對(duì)話演示
- 企業(yè)標(biāo)準(zhǔn)的編寫(xiě)合同5篇
- 二零二五年度智能車庫(kù)使用權(quán)出售及管理服務(wù)合同3篇
- 二零二五版2025年度情感修復(fù)協(xié)議書(shū)-自愿離婚調(diào)解合同3篇
- 2025版共享用工社會(huì)保險(xiǎn)繳納協(xié)議范本3篇
- 設(shè)備維護(hù)保養(yǎng)培訓(xùn)教學(xué)案例
- 中考題型連連看近3年幻燈片課件
- 第8課現(xiàn)代文學(xué)和美術(shù)教學(xué)文案
- 電腦操作會(huì)考電腦2001-2002上課講義
- 二零二五年茶葉市場(chǎng)推廣合作合同2篇
- 礦石運(yùn)輸與堆放技術(shù)
- 學(xué)校安全存在的問(wèn)題及整改措施
- 2024-2025年江蘇專轉(zhuǎn)本英語(yǔ)歷年真題(含答案)
- 紅色中國(guó)風(fēng)蛇年晚會(huì)豎版邀請(qǐng)函
- 電力線路遷改工程方案
- 六年級(jí)下冊(cè)語(yǔ)文試卷-《14 文言文二則》一課一練(含答案)人教部編版
- 酒店求購(gòu)收購(gòu)方案
- 工程建設(shè)法規(guī)與案例 第3版 課件全套 劉黎虹第1-11章 建設(shè)法規(guī)概述-建設(shè)工程糾紛解決及法律責(zé)任
- 工商企業(yè)管理畢業(yè)論文范文(4篇)
- 《2024版 CSCO非小細(xì)胞肺癌診療指南》解讀 2
- 化工企業(yè)安全操作規(guī)程
評(píng)論
0/150
提交評(píng)論