2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

2.

3.A.A.

B.x2

C.2x

D.2

4.

5.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

6.

7.A.A.4B.-4C.2D.-2

8.

9.

10.下列關(guān)系正確的是()。A.

B.

C.

D.

11.

12.當(dāng)x→0時(shí),x是ln(1+x2)的

A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小

13.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4

14.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

15.A.0或1B.0或-1C.0或2D.1或-1

16.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

17.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

18.設(shè)y=x-5,則dy=().A.A.-5dxB.-dxC.dxD.(x-1)dx

19.

A.(-2,2)

B.(-∞,0)

C.(0,+∞)

D.(-∞,+∞)

20.

二、填空題(20題)21.微分方程y"+y=0的通解為______.

22.

23.

24.設(shè)f(x)=esinx,則=________。

25.

26.

27.

28.

29.設(shè)y=lnx,則y'=_________。

30.

31.

32.

33.

34.

35.

36.

37.

38.微分方程y+9y=0的通解為________.

39.設(shè)函數(shù)y=x3,則y'=________.

40.

三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

42.

43.證明:

44.

45.求微分方程的通解.

46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

47.求微分方程y"-4y'+4y=e-2x的通解.

48.

49.

50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

52.將f(x)=e-2X展開為x的冪級(jí)數(shù).

53.

54.

55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

56.求曲線在點(diǎn)(1,3)處的切線方程.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

58.

59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.

62.

63.設(shè)函數(shù)y=sin(2x-1),求y'。

64.求y"+2y'+y=2ex的通解.

65.

66.

67.

68.

69.

70.計(jì)算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.

五、高等數(shù)學(xué)(0題)71.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸

六、解答題(0題)72.

參考答案

1.B本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

2.D

3.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

可知應(yīng)選D.

4.A解析:

5.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

6.B解析:

7.D

8.D

9.D解析:

10.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

11.A

12.D解析:

13.B

14.A

15.A

16.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。

17.C

18.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

19.A

20.B

21.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.

22.<0

23.

24.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

25.

26.

27.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>

28.

29.1/x

30.

31.

32.1

33.極大值為8極大值為8

34.

35.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

36.

37.22解析:

38.

本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.

39.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

40.(1+x)ex(1+x)ex

解析:

41.由等價(jià)無窮小量的定義可知

42.

43.

44.

45.

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

48.

49.

50.由二重積分物理意義知

51.

52.

53.由一階線性微分方程通解公式有

54.

55.

列表:

說明

56.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

57.

58.

59.函數(shù)的定義域?yàn)?/p>

注意

60.

61.

62.

63.

64.相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-1(二重實(shí)根);齊次方程的通解為Y=(C1+C2x)e-x

相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-1(二重實(shí)根);齊次方程的通解為Y=(C1+C2x)e-x,

65.

66.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)'f(x)無意義,則間斷點(diǎn)為

x-3=kπ(k=0,±1,±2,..).

即x=3+kπ(k=0,±1,±2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論