2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

2.

3.

4.A.A.3yx3y-1

B.yx3y-1

C.x3ylnx

D.3x3ylnx

5.

6.

7.

8.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

9.

10.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1

11.

12.

13.A.A.1

B.3

C.

D.0

14.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

15.

16.

17.下列命題中正確的有()A.A.

B.

C.

D.

18.

19.

20.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類(lèi)的。

A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位

B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景

C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位

D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力

二、填空題(20題)21.

22.23.設(shè)y1(x)、y2(x)是二階常系數(shù)線性微分方程y″+py′+qy=0的兩個(gè)線性無(wú)關(guān)的解,則它的通解為_(kāi)_____.24.y″+5y′=0的特征方程為——.25.26.

27.

28.

29.

30.

31.

32.

33.

34.

35.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。

36.

37.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分38.

39.

40.三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.

42.

43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.47.

48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

49.

50.

51.證明:52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.55.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.求微分方程的通解.

58.求微分方程y"-4y'+4y=e-2x的通解.

59.

60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)61.62.

63.證明:ex>1+x(x>0)

64.

65.

66.計(jì)算∫xsinxdx。

67.設(shè)ex-ey=siny,求y’68.設(shè)區(qū)域D為:69.

70.

五、高等數(shù)學(xué)(0題)71.已知函數(shù)z=ln(x+y2),求

六、解答題(0題)72.

參考答案

1.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

2.B

3.B

4.D

5.A

6.D解析:

7.A

8.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

9.B解析:

10.C

11.B

12.D

13.B本題考查的知識(shí)點(diǎn)為重要極限公式.可知應(yīng)選B.

14.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

15.A

16.C解析:

17.B

18.D

19.D

20.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類(lèi)。

21.

22.

23.由二階線性常系數(shù)微分方程解的結(jié)構(gòu)可知所給方程的通解為

其中C1,C2為任意常數(shù).24.由特征方程的定義可知,所給方程的特征方程為

25.1本題考查了無(wú)窮積分的知識(shí)點(diǎn)。26.ln(1+x)本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).

27.x2+y2=Cx2+y2=C解析:

28.

29.

解析:

30.3

31.0

32.y=0

33.

34.x/1=y/2=z/-1

35.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。

36.37.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

38.F(sinx)+C本題考查的知識(shí)點(diǎn)為不定積分的換元法.

由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,

39.3/23/2解析:40.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于所給極限為“”型極限,由極限四則運(yùn)算法則有

41.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

42.

43.

44.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%45.函數(shù)的定義域?yàn)?/p>

注意

46.

47.

48.

49.

50.

51.

52.由等價(jià)無(wú)窮小量的定義可知

53.

54.

55.56.由二重積分物理意義知

57.

58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

59.由一階線性微分方程通解公式有

60.

列表:

說(shuō)明

61.

62.

63.

64.

65.

66.∫xsinxdx=x(-cosx)-∫(-cosx)dx=-xcosx+sinx+C。

67.68.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).

如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.

使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論