2022屆河南省鄭州市外國(guó)語(yǔ)高中高考沖刺數(shù)學(xué)模擬試題含解析_第1頁(yè)
2022屆河南省鄭州市外國(guó)語(yǔ)高中高考沖刺數(shù)學(xué)模擬試題含解析_第2頁(yè)
2022屆河南省鄭州市外國(guó)語(yǔ)高中高考沖刺數(shù)學(xué)模擬試題含解析_第3頁(yè)
2022屆河南省鄭州市外國(guó)語(yǔ)高中高考沖刺數(shù)學(xué)模擬試題含解析_第4頁(yè)
2022屆河南省鄭州市外國(guó)語(yǔ)高中高考沖刺數(shù)學(xué)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對(duì)于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.42.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知函數(shù),若,則a的取值范圍為()A. B. C. D.4.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.5.已知,且,則()A. B. C. D.6.復(fù)數(shù)().A. B. C. D.7.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.8.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.9.如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則的周長(zhǎng)的取值范圍是()A. B. C. D.10.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則()A.在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值11.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長(zhǎng)為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.12.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足,則的最大值為_(kāi)_______.14.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為_(kāi)_____.15.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到一個(gè)偶函數(shù)圖象,則________.16.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點(diǎn)對(duì)稱.(1)求和的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與交于,與交于,求證:.18.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.19.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.20.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.21.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知拋物線:()上橫坐標(biāo)為3的點(diǎn)與拋物線焦點(diǎn)的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動(dòng)點(diǎn),過(guò)P作圓的兩條切線分別與y軸交于A、B兩點(diǎn).求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.2.D【解析】

通過(guò)變形,通過(guò)“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.3.C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.4.C【解析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.5.B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過(guò)程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.6.A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫(xiě)成分式的形式,再將分母實(shí)數(shù)化.7.B【解析】

據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.8.C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫(huà)出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題9.B【解析】

根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長(zhǎng)求得其范圍.【詳解】拋物線,則焦點(diǎn),準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個(gè)曲線上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長(zhǎng)為,所以,故選:B.【點(diǎn)睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.10.C【解析】

采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.11.C【解析】

設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長(zhǎng)為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)垂直關(guān)系得到直線與平面所求角,再利用球心位置來(lái)求解出線段長(zhǎng),屬于中檔題.12.D【解析】可以是共4個(gè),選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過(guò)時(shí),直線的斜率取得最大值,代入點(diǎn)A的坐標(biāo)可得答案.【詳解】畫(huà)出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點(diǎn),目標(biāo)函數(shù)表示點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過(guò)時(shí),直線的斜率取得最大值,此時(shí)的最大值為.故答案為:.【點(diǎn)睛】本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.14.【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問(wèn)題,屬于中檔題目,在解題的過(guò)程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問(wèn)題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.15.【解析】

根據(jù)平移后關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,進(jìn)而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個(gè)單位長(zhǎng)度后得到偶函數(shù)圖象,即關(guān)于軸對(duì)稱關(guān)于對(duì)稱即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的對(duì)稱軸求解參數(shù)值的問(wèn)題,關(guān)鍵是能夠通過(guò)平移后的對(duì)稱軸得到原函數(shù)的對(duì)稱軸,進(jìn)而利用特殊值的方式來(lái)進(jìn)行求解.16.31【解析】

由二項(xiàng)式定理及其展開(kāi)式得通項(xiàng)公式得:因?yàn)榈恼归_(kāi)式得通項(xiàng)為,則的展開(kāi)式中的常數(shù)項(xiàng)為:,得解.【詳解】解:,則的展開(kāi)式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開(kāi)式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2)證明見(jiàn)解析.【解析】分析:(1)設(shè)的標(biāo)準(zhǔn)方程為,由題意可設(shè).結(jié)合中點(diǎn)坐標(biāo)公式計(jì)算可得的標(biāo)準(zhǔn)方程為.半徑,則的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,則其方程為,由弦長(zhǎng)公式可得.聯(lián)立直線與拋物線的方程有.設(shè),利用韋達(dá)定理結(jié)合弦長(zhǎng)公式可得.則.即.詳解:(1)設(shè)的標(biāo)準(zhǔn)方程為,則.已知在直線上,故可設(shè).因?yàn)殛P(guān)于對(duì)稱,所以解得所以的標(biāo)準(zhǔn)方程為.因?yàn)榕c軸相切,故半徑,所以的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設(shè),則,那么.所以.所以,即.點(diǎn)睛:(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長(zhǎng)問(wèn)題,要注意直線是否過(guò)拋物線的焦點(diǎn),若過(guò)拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過(guò)焦點(diǎn),則必須用一般弦長(zhǎng)公式.18.(1)(2)【解析】

(1)把f(x)去絕對(duì)值寫(xiě)成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對(duì)值寫(xiě)成分段函數(shù),畫(huà)出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時(shí),.當(dāng)時(shí),即為,解得.當(dāng)時(shí),,解得.當(dāng)時(shí),,解得.綜上,的解集為.(2).,由的圖象知,,.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法及含絕對(duì)值的函數(shù)的最值問(wèn)題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題19.(1);(2)【解析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)椋杂扇切蚊娣e公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)椋杂烧叶ɡ泶牖?jiǎn)可得,由(1),代入可得,展開(kāi)化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)椋?,所以,所以為等腰三角形,且,所?【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.20.(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡(jiǎn)得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),即x02=4+2,此時(shí),p=.所以的最小值為2+1.考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問(wèn)題.21.(1),;(2)【解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對(duì)函數(shù)進(jìn)行求導(dǎo),,通過(guò)導(dǎo)數(shù)求出,若,則恒成立不

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論