2021-2022學(xué)年福建省達(dá)標(biāo)校高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
2021-2022學(xué)年福建省達(dá)標(biāo)校高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
2021-2022學(xué)年福建省達(dá)標(biāo)校高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
2021-2022學(xué)年福建省達(dá)標(biāo)校高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
2021-2022學(xué)年福建省達(dá)標(biāo)校高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開式中的系數(shù)為()A. B. C. D.2.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.3.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.4.由曲線圍成的封閉圖形的面積為()A. B. C. D.5.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.6.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.7.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心8.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對(duì)稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③ C.①③④ D.①②④9.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.510.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差11.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機(jī)變量服從正態(tài)分布(),若,則D.設(shè)是實(shí)數(shù),“”是“”的充分不必要條件12.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為____.14.函數(shù)在的零點(diǎn)個(gè)數(shù)為_________.15.已知圓C:經(jīng)過拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長是__________.16.已知集合,.若,則實(shí)數(shù)a的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.18.(12分)已知函數(shù),.(1)若時(shí),解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?0.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).21.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).22.(10分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是常考知識(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.2.D【解析】

構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.3.B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.4.A【解析】

先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.5.C【解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)?,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.6.A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.7.B【解析】

解出,計(jì)算并化簡可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.8.C【解析】

①利用之間的代換判斷出對(duì)稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;綜上可知:有四條對(duì)稱軸,故正確;②:因?yàn)?,所以,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)?,所以,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱性,可通過替換方程中去分析證明.9.B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.10.C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點(diǎn)睛】本題考查統(tǒng)計(jì)問題,考查數(shù)據(jù)處理能力和應(yīng)用意識(shí).11.D【解析】

由特稱命題的否定是全稱命題可判斷選項(xiàng)A;可能相交,可判斷B選項(xiàng);利用正態(tài)分布的性質(zhì)可判斷選項(xiàng)C;或,利用集合間的包含關(guān)系可判斷選項(xiàng)D.【詳解】命題“,”的否定形式是“,”,故A錯(cuò)誤;,,則可能相交,故B錯(cuò)誤;若,則,所以,故,所以C錯(cuò)誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.12.B【解析】

設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過作交于點(diǎn),連接由拋物線定義,

,

當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號(hào),∴的最小值為.

故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.28【解析】

將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.14.1【解析】

本問題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.15.【解析】

求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進(jìn)而求出弦長.【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長.【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長公式.16.9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點(diǎn)睛】本題考查集合的交集,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡和計(jì)算能力.18.(1)(2)【解析】

(1)零點(diǎn)分段法,分,,討論即可;(2)當(dāng)時(shí),原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時(shí),,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時(shí),由得,即,故得,又由題意知:,即,故的范圍為.【點(diǎn)睛】本題考查解絕對(duì)值不等式以及不等式能成立求參數(shù),考查學(xué)生的運(yùn)算能力,是一道容易題.19.(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問題,屬于中檔題.20.(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點(diǎn)的坐標(biāo).試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當(dāng)時(shí),,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當(dāng)時(shí),;當(dāng)時(shí),.故或.21.(1)(2)答案見解析(3)答案見解析【解析】

(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論