版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.2.已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為()A. B.C. D.3.函數(shù)的部分圖像大致為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.45.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)6.已知集合,集合,則等于()A. B.C. D.7.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.38.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.9.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-311.已知集合,則=()A. B. C. D.12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)15.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點,且,當(dāng)平面時,求實數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.18.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.19.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.20.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.21.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.22.(10分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.【點睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.2.D【解析】
當(dāng)時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,,故,,,,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.3.A【解析】
根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當(dāng)時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.4.C【解析】試題分析:根據(jù)題意,當(dāng)時,令,得;當(dāng)時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.5.B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。6.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.7.A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).8.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運算與求解能力,數(shù)基礎(chǔ)題.9.B【解析】
根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.10.D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.11.D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎(chǔ)題.12.A【解析】
根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當(dāng)時,,當(dāng),,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求得復(fù)數(shù),再由復(fù)數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復(fù)數(shù)的四則運算和求復(fù)數(shù)的模,是基礎(chǔ)題.14.【解析】
根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質(zhì)上每個因式中各取一項的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.15.【解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.16.【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)連接交于點,連接,利用線面平行的性質(zhì)定理可推導(dǎo)出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導(dǎo)出,,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點,連接、,過點作,則,作于,連接.為的中點,且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點,所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時也考查了線面角的計算,涉及利用二面角求線段長度,考查推理能力與計算能力,屬于中等題.18.(1)(2)【解析】
(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設(shè)直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據(jù)直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點,所以橢圓右焦點的坐標為,故,因為線段AB的中點是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因為到直線的距離分別是,由于直線l與線段AB(不含端點)相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時,,因此四邊形面積的最大值為.【點睛】本題考查求橢圓的標準方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關(guān)系的應(yīng)用,考查運算能力.19.(1)見解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標,利用導(dǎo)數(shù)求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.20.(1)(2)【解析】
(1)當(dāng)時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當(dāng)時,,函數(shù)的圖象與軸沒有交點,不符合題意;當(dāng)時,,函數(shù)的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.21.(1)見解析(2)見解析【解析】
(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗
- 2024幼兒園保育員幼兒教育理念與實踐合同3篇
- 二零二五年房地產(chǎn)項目海外分銷代理協(xié)議3篇
- 二零二五版國際貿(mào)易人才招聘與培訓(xùn)合同2篇
- 2025年教育設(shè)施智能化改造與裝修服務(wù)合同范本3篇
- 2025年度環(huán)保設(shè)施運營管理合同范本及效益評估3篇
- 專業(yè)車輛運送協(xié)議模板(2024定制版)版B版
- 2024虛擬股投資退出機制合同范本3篇
- 二零二五年度駕校經(jīng)營管理權(quán)定制化服務(wù)協(xié)議2篇
- 二零二五年度文化產(chǎn)業(yè)發(fā)展前景調(diào)研合同3篇
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導(dǎo)管置管技術(shù)
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- GB/T 29490-2013企業(yè)知識產(chǎn)權(quán)管理規(guī)范
- GB/T 14436-1993工業(yè)產(chǎn)品保證文件總則
- 湖南省鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心地址醫(yī)療機構(gòu)名單目錄
- 《中外資產(chǎn)評估準則》課件第6章 英國評估準則
- FZ∕T 63006-2019 松緊帶
- 罐區(qū)自動化系統(tǒng)總體方案(31頁)ppt課件
- BIQS評分表模板
- 工程建設(shè)項目內(nèi)外關(guān)系協(xié)調(diào)措施
評論
0/150
提交評論