2022-2023學年福建龍巖一中高考數(shù)學一模試卷含解析_第1頁
2022-2023學年福建龍巖一中高考數(shù)學一模試卷含解析_第2頁
2022-2023學年福建龍巖一中高考數(shù)學一模試卷含解析_第3頁
2022-2023學年福建龍巖一中高考數(shù)學一模試卷含解析_第4頁
2022-2023學年福建龍巖一中高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c2.已知復數(shù)滿足,且,則()A.3 B. C. D.3.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,4.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.5.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.6.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.07.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.8.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.9.設,集合,則()A. B. C. D.10.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區(qū)間為()A. B.C. D.11.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.812.函數(shù)的部分圖象如圖所示,則的單調遞增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.15.已知,復數(shù)且(為虛數(shù)單位),則__________,_________.16.已知正實數(shù)滿足,則的最小值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.18.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.21.(12分)已知(1)若,且函數(shù)在區(qū)間上單調遞增,求實數(shù)a的范圍;(2)若函數(shù)有兩個極值點,且存在滿足,令函數(shù),試判斷零點的個數(shù)并證明.22.(10分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調性等基礎知識,考查運算求解能力,是基礎題.2、C【解析】

設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數(shù)的乘法法則的應用,考查共軛復數(shù)的應用.3、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.4、D【解析】

集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.5、D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的關鍵.6、C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.7、B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.8、D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.9、B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.10、D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調遞增區(qū)間得出函數(shù)的單調遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.11、A【解析】

由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.12、D【解析】

由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質求出單調增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,利用“五點法”求函數(shù)解析式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.14、【解析】

一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.15、【解析】∵復數(shù)且∴∴∴∴,故答案為,16、4【解析】

由題意結合代數(shù)式的特點和均值不等式的結論整理計算即可求得最終結果.【詳解】.當且僅當時等號成立.據(jù)此可知:的最小值為4.【點睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關系,然后代入代數(shù)式轉化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構造和或積為常數(shù)的式子,然后利用基本不等式求解最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,直線的傾斜角為(2)【解析】

(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標方程后可得傾斜角;(2)求出直線與軸交點,用參數(shù)表示點坐標,求出,利用三角函數(shù)的性質可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標為則當且僅當時,取最大值.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,屬于基礎題.求兩點間距離的最值時,用參數(shù)方程設點的坐標可把問題轉化為三角函數(shù)問題.18、(1)見詳解;(2).【解析】

(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.【點睛】很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉化為求二面角的平面角問題考查考生的空間想象能力.19、(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1)(2)與交點的極坐標為,和【解析】

(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數(shù)方程化為極坐標方程為;(2)聯(lián)立可得:,與交點的極坐標為,和.【點睛】本題考查了參數(shù)方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯(lián)立,屬于基礎題.21、(1)(2)函數(shù)有兩個零點和【解析】試題分析:(1)求導后根據(jù)函數(shù)在區(qū)間單調遞增,導函數(shù)大于或等于0(2)先判斷為一個零點,然后再求導,根據(jù),化簡求得另一個零點。解析:(1)當時,,因為函數(shù)在上單調遞增,所以當時,恒成立.[來源:Z&X&X&K]函數(shù)的對稱軸為.①,即時,,即,解之得,解集為空集;②,即時,即,解之得,所以③,即時,即,解之得,所以綜上所述,當函數(shù)在區(qū)間上單調遞增.(2)∵有兩個極值點,∴是方程的兩個根,且函數(shù)在區(qū)間和上單調遞增,在上單調遞減.∵∴函數(shù)也是在區(qū)間和上單調遞增,在上單調遞減∵,∴是函數(shù)的一個零點.由題意知:∵,∴,∴∴,∴又=∵是方程的兩個根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調遞增,在上單調遞減,在上單調遞增∴當時,,當時,當時,∴函數(shù)有兩個零點和.22、(1),定義域是.(2)百萬【解析】

(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論