版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年安徽省宣城市成考專升本高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.設f(x)在x=0處有二階連續(xù)導數(shù)
則x=0是f(x)的()。
A.間斷點B.極大值點C.極小值點D.拐點
3.
4.
5.
6.設y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx7.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上計算均正確
8.設y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
9.
10.設y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
11.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
12.
13.若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
14.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散15.
設f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
16.A.A.
B.
C.
D.
17.設y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)
B.c1y1(x)+y2(x)
C.y1(x)+y2(x)
D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).
18.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
19.
20.設函數(shù)f(x)與g(x)均在(α,b)可導,且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小21.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸22.設y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx23.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
24.
A.0
B.
C.1
D.
25.設函數(shù)f(x)在點x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
26.
等于().
27.
28.
29.
30.()。A.
B.
C.
D.
31.設平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合32.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
33.政策指導矩陣是根據(jù)()將經(jīng)營單值進行分類的。
A.業(yè)務增長率和相對競爭地位
B.業(yè)務增長率和行業(yè)市場前景
C.經(jīng)營單位的競爭能力與相對競爭地位
D.經(jīng)營單位的競爭能力與市場前景吸引力
34.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
35.在空間直角坐標系中方程y2=x表示的是
A.拋物線B.柱面C.橢球面D.平面
36.
37.
38.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合39.設z=tan(xy),則等于()A.A.
B.
C.
D.
40.
41.
42.
43.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
44.A.充分條件B.必要條件C.充要條件D.以上都不對45.A.A.
B.
C.
D.
46.A.dx+dy
B.
C.
D.2(dx+dy)
47.
48.
49.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C50.二、填空題(20題)51.
52.
53.
54.
55.設y=1nx,則y'=__________.56.
57.
58.設x=f(x,y)在點p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點,則______.59.60.
61.
62.
63.
64.
65.函數(shù)的間斷點為______.
66.
67.
68.微分方程y"+y=0的通解為______.69.
70.
三、計算題(20題)71.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
72.
73.當x一0時f(x)與sin2x是等價無窮小量,則
74.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.76.將f(x)=e-2X展開為x的冪級數(shù).77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.78.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.79.證明:80.
81.82.83.84.求微分方程的通解.85.
86.
87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.88.求曲線在點(1,3)處的切線方程.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.
92.求曲線y=x3+2過點(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。
93.
94.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
95.(本題滿分8分)
96.
97.
98.
99.設y=xcosx,求y'.
100.
五、高等數(shù)學(0題)101.若需求函數(shù)q=12—0.5p,則P=6時的需求彈性r/(6)=_________。
六、解答題(0題)102.
參考答案
1.A
2.C則x=0是f(x)的極小值點。
3.D解析:
4.B
5.B
6.B
7.A
8.D本題考查的知識點為復合函數(shù)求導數(shù)的鏈式法則。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯誤選C,這是求復合函數(shù)的導數(shù)時丟掉項而造成的!因此考生應熟記:若y=f(u),u=u(x),則
不要丟項。
9.B
10.B
11.A
12.D解析:
13.B
14.D
15.C本題考查的知識點為不定積分的性質(zhì)??芍獞xC。
16.D本題考查的知識點為偏導數(shù)的計算.
17.D
18.C解析:
19.C
20.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒有g(shù)(α)與f(α)的已知條件,無法判明f(x)與g(x)的關(guān)系。
21.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。
22.B
23.D
24.A
25.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應選D。
26.D解析:本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法.
因此選D.
27.A解析:
28.A
29.A
30.D
31.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0。可知兩平面垂直,因此選A。
32.A本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應選A.
33.D解析:政策指導矩陣根據(jù)對市場前景吸引力和經(jīng)營單位的相對競爭能力的劃分,可把企業(yè)的經(jīng)營單位分成九大類。
34.D
35.B解析:空間中曲線方程應為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標的方程均表示柱面,可知應選B。
36.D解析:
37.D
38.A本題考查的知識點為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
39.B本題考查的知識點為偏導數(shù)運算.
由于z=tan(xy),因此
可知應選A.
40.D解析:
41.A解析:
42.B解析:
43.D本題考查的知識點為可變限積分求導。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
44.D極限是否存在與函數(shù)在該點有無定義無關(guān).
45.B
46.C
47.D
48.A解析:
49.C
50.A
51.
52.6x26x2
解析:53.本題考查的知識點為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y一3z=0.
54.
55.
56.
57.
解析:58.0本題考查的知識點為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點P0(x0,y0)可微分,P(x0,y0)為z的極值點,由極值的必要條件可知
59.
本題考查的知識點為二階常系數(shù)線性微分方程的求解.
60.
61.
62.
解析:
63.
64.-165.本題考查的知識點為判定函數(shù)的間斷點.
僅當,即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。
66.
本題考查的知識點為二元函數(shù)的偏導數(shù).
67.68.y=C1cosx+C2sinx本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.69.1
70.
解析:
71.
72.
73.由等價無窮小量的定義可知
74.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
75.
列表:
說明
76.77.函數(shù)的定義域為
注意
78.
79.
80.
則
81.
82.
83.
84.85.由一階線性微分方程通解公式有
86.
87.
88.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年教育機構(gòu)校長聘用合同書3篇
- 2024版勞務派遣就業(yè)合同范本
- 二零二四南京個人租賃房屋租賃合同租賃物交付驗收合同3篇
- 年度Β-內(nèi)酰胺類抗菌藥物產(chǎn)業(yè)分析報告
- 年度高檔生物顯微鏡競爭策略分析報告
- 年度大孔燒結(jié)空心磚競爭策略分析報告
- 2025年西瓜種植與農(nóng)業(yè)科技園區(qū)建設合作合同范本3篇
- 金屬材料及工藝技術(shù)創(chuàng)新研究報告
- 2025年度淋浴房淋浴房頂安裝合同4篇
- 二零二四年?;费哼\員安全管理責任書與考核合同3篇
- 寒潮雨雪應急預案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓計劃
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2022-2023學年第一學期期末試卷
- 2024版機床維護保養(yǎng)服務合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論