版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年四川省廣元市成考專升本高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.微分方程y"-y=ex的一個特解應具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
2.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關
3.
4.
5.
6.當x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小
7.
8.設區(qū)域,將二重積分在極坐標系下化為二次積分為()A.A.
B.
C.
D.
9.若x0為f(x)的極值點,則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
10.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
11.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散12.A.A.-sinx
B.cosx
C.
D.
13.
14.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
15.
16.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
17.
18.設z=tan(xy),則等于()A.A.
B.
C.
D.
19.
20.A.A.2/3B.3/2C.2D.3
21.
22.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
23.以下結(jié)論正確的是().
A.
B.
C.
D.
24.
25.
26.
27.A.A.1/2B.1C.2D.e28.設直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸
29.
30.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散
31.
32.
33.下列關系正確的是()。A.
B.
C.
D.
34.
35.
36.
37.
38.()。A.e-2
B.e-2/3
C.e2/3
D.e2
39.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
40.
A.必定收斂B.必定發(fā)散C.收斂性與α有關D.上述三個結(jié)論都不正確41.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
42.
43.
44.
45.設z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
46.
47.設y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx48.設f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點
B.x0為f(x)的極小值點
C.x0不為f(x)的極值點
D.x0可能不為f(x)的極值點
49.
50.
二、填空題(20題)51.
52.
53.
54.
55.設函數(shù)f(x)有連續(xù)的二階導數(shù)且f(0)=0,f'(0)=1,f''(0)=-2,則
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.設y=f(x)在點x=0處可導,且x=0為f(x)的極值點,則f(0)=__________
69.
70.
三、計算題(20題)71.將f(x)=e-2X展開為x的冪級數(shù).72.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
74.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
75.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.76.當x一0時f(x)與sin2x是等價無窮小量,則77.求微分方程的通解.78.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
80.求微分方程y"-4y'+4y=e-2x的通解.
81.
82.
83.84.
85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.86.
87.
88.
89.證明:90.求曲線在點(1,3)處的切線方程.四、解答題(10題)91.92.
93.
94.
95.
96.(本題滿分8分)
97.
98.
99.一象限的封閉圖形.
100.五、高等數(shù)學(0題)101.
()。
A.0B.1C.2D.4六、解答題(0題)102.在曲線y=x2(x≥0)上某點A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點A的坐標((a,a2).(2)過切點A的切線方程.
參考答案
1.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項f1(x)=ex,α=1是特征單根,故應設定y*=αxex,因此選B。
2.A本題考查的知識點為無窮級數(shù)的收斂性。
3.D
4.A
5.B
6.D解析:
7.C
8.A本題考查的知識點為將二重積分化為極坐標系下的二次積分.
由于在極坐標系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應選A.
9.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導,如y=|x|,在點x0=0處f(x)不可導,但是點x0=0為f(a)=|x|的極值點.
(2)f(x)在點x0可導,則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項可知應選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導,且x0為f(x)的極值點,則必有f'(x0)=0”認為是極值的充分必要條件.
10.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
11.D
12.C本題考查的知識點為基本導數(shù)公式.
可知應選C.
13.A
14.C本題考查了導數(shù)的基本公式的知識點。f'(x)=(5x)'=5xln5.
15.C
16.A
17.C解析:
18.B本題考查的知識點為偏導數(shù)運算.
由于z=tan(xy),因此
可知應選A.
19.C
20.A
21.B
22.D本題考查了函數(shù)的極值的知識點。
23.C
24.B解析:
25.D
26.D解析:
27.C
28.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且
(0,2,1)*(1,0,0)=0,
可知所給直線與x軸垂直,因此選C。
29.A
30.C解析:
31.B
32.D
33.C本題考查的知識點為不定積分的性質(zhì)。
34.C
35.D
36.D
37.B解析:
38.B
39.C所給方程為可分離變量方程.
40.D本題考查的知識點為正項級數(shù)的比較判別法.
41.C
42.B解析:
43.B
44.A解析:
45.A本題考查的知識點為偏導數(shù)的計算。對于z=x2y,求的時候,要將z認定為x的冪函數(shù),從而可知應選A。
46.B
47.B
48.A本題考查的知識點為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應選A.
49.D
50.A
51.33解析:
52.
53.-2
54.1/20055.-1
56.11解析:
57.
58.-2-2解析:
59.
60.12x
61.
62.5/2
63.2
64.
65.
66.
67.0
68.
69.x/1=y/2=z/-1
70.1/2
71.
72.
73.
列表:
說明
74.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%75.由二重積分物理意義知
76.由等價無窮小量的定義可知
77.
78.
79.函數(shù)的定義域為
注意
80.解:原方程對應的齊次方程為y"-4y'+4y=0,
81.
82.
83.84.由一階線性微分方程通解公式有
85.
86.
87.
88.
則
89.
90.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
91.
92.
93.
94.
95.
96.本題考查的知識點為求解-階線性微分方程.
所給方程為-階線性微分方程
97.
98.
99.
100.
101.C10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 柳州職業(yè)技術(shù)學院《動畫劇本與分鏡設計》2023-2024學年第一學期期末試卷
- 江西中醫(yī)藥大學《畫法幾何與土建制圖》2023-2024學年第一學期期末試卷
- 新蘇教版一年級下冊數(shù)學第1單元第1課時《9加幾》教案
- 華僑大學《思想道德修養(yǎng)》2023-2024學年第一學期期末試卷
- 湖北科技職業(yè)學院《Web應用與開發(fā)》2023-2024學年第一學期期末試卷
- 河南中醫(yī)藥大學《音樂基礎理論2》2023-2024學年第一學期期末試卷
- 重慶輕工職業(yè)學院《辦公空間設計》2023-2024學年第一學期期末試卷
- 駐馬店職業(yè)技術(shù)學院《馬克思主義中國化》2023-2024學年第一學期期末試卷
- 浙江萬里學院《金融風險分析師(FRM)專題(雙語)》2023-2024學年第一學期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學院《證券投資常識》2023-2024學年第一學期期末試卷
- 教育綜合體項目策劃書
- 軟件開發(fā)項目服務方案
- 2024版質(zhì)量管理培訓
- 2024年廣東省公務員錄用考試《行測》真題及答案解析
- 2024至2030年中國液體罐式集裝箱數(shù)據(jù)監(jiān)測研究報告
- 四川省2024年中考數(shù)學試卷十七套合卷【附答案】
- 家用電子產(chǎn)品維修工(中級)職業(yè)技能鑒定考試題庫(含答案)
- 無脊椎動物課件-2024-2025學年人教版生物七年級上冊
- 2024年銀發(fā)健康經(jīng)濟趨勢與展望報告:新老人、新需求、新生態(tài)-AgeClub
- 2024年江西省“振興杯”家務服務員競賽考試題庫(含答案)
- 吉林省2024年中考物理試題(含答案)
評論
0/150
提交評論