版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
3.
4.
5.()A.A.
B.
C.
D.
6.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
7.A.A.4B.3C.2D.1
8.
9.A.A.
B.
C.
D.
10.A.A.3
B.5
C.1
D.
11.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
12.
13.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
14.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
15.A.A.
B.
C.-3cotx+C
D.3cotx+C
16.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
17.
18.
19.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
20.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時,比較無窮小量f(x)與g(x),有
A.f(x)對于g(x)是高階的無窮小量
B.f(x)對于g(x)是低階的無窮小量
C.f(x)與g(x)為同階無窮小量,但非等價無窮小量
D.f(x)與g(x)為等價無窮小量
二、填空題(20題)21.
22.
23.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.
24.
25.函數(shù)f(x)=x2在[-1,1]上滿足羅爾定理的ξ=_________。
26.
27.
28.設(shè)y=f(x)可導(dǎo),點xo=2為f(x)的極小值點,且f(2)=3.則曲線y=f(x)在點(2,3)處的切線方程為__________.
29.
30.
31.設(shè),則y'=________。32.
33.
34.
35.二元函數(shù)z=x2+y2+1的極小值為_______.
36.
37.
38.39.y″+5y′=0的特征方程為——.
40.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
三、計算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.證明:43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
45.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
46.
47.48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
49.
50.求曲線在點(1,3)處的切線方程.51.求微分方程的通解.52.53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.55.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則56.
57.
58.59.將f(x)=e-2X展開為x的冪級數(shù).60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.
62.求微分方程y"-3y'+2y=0的通解。
63.
64.
65.
66.
67.
68.求xyy=1-x2的通解.
69.
70.(本題滿分8分)
五、高等數(shù)學(xué)(0題)71.設(shè)
求df(t)
六、解答題(0題)72.
參考答案
1.A解析:
2.C所給方程為可分離變量方程.
3.D
4.A解析:
5.A
6.A本題考查的知識點為不定積分運算.
可知應(yīng)選A.
7.C
8.B
9.B本題考查的知識點為偏導(dǎo)數(shù)運算.
由于z=tan(xy),因此
可知應(yīng)選B.
10.A本題考查的知識點為判定極值的必要條件.
故應(yīng)選A.
11.D由定積分性質(zhì):若f(x)≤g(x),則
12.C
13.B
14.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
15.C
16.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時,cosξ=0,因此選C。
17.D解析:
18.D解析:
19.D本題考查的知識點為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
20.C
21.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點。
22.123.2e2x本題考查的知識點為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對所給表達(dá)式兩端關(guān)于x求導(dǎo).
24.11解析:
25.0
26.22解析:
27.
28.
29.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識點
30.
31.
32.
33.1/21/2解析:
34.-135.1;本題考查的知識點為二元函數(shù)的極值.
可知點(0,0)為z的極小值點,極小值為1.
36.
解析:
37.
38.39.由特征方程的定義可知,所給方程的特征方程為
40.
41.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.
44.
列表:
說明
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%46.由一階線性微分方程通解公式有
47.
48.函數(shù)的定義域為
注意
49.
50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.
52.
53.
54.
55.由等價無窮小量的定義可知
56.
則
57.
58.
59.60.由二重積分物理意義知
61.
62.y"-3y'+2y=0特征方程為r2-3r+2=0(r-1)(r-2)=0。特征根為r1=1r2=2。方程的通解為y=C1ex+C2e2x。y"-3y'+2y=0,特征方程為r2-3r+2=0,(r-1)(r-2)=0。特征根為r1=1,r2=2。方程的通解為y=C1ex
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市金山區(qū)華東師大三附中2013-2014學(xué)年高一下學(xué)期期末考試數(shù)學(xué)試題
- 【全程復(fù)習(xí)方略】2020年人教A版數(shù)學(xué)理(福建用)課時作業(yè):第三章-第八節(jié)應(yīng)-用-舉-例
- 學(xué)校的八年級的班級工作計劃范文
- 陜西省渭南市2025屆高三教學(xué)質(zhì)量檢測(Ⅰ)物理試題(含答案)
- 四川省綿陽市綿陽中學(xué)2024-2025學(xué)年高一上學(xué)期期末模擬測試物理試題(含答案)
- 【備戰(zhàn)2021高考】全國2021屆高中英語試題匯編(第六期-11月):U單元-重慶
- 【名師一號】2022屆高三歷史一輪復(fù)習(xí)調(diào)研試題:第七單元-古代中國經(jīng)濟(jì)的基本結(jié)構(gòu)與特點7-13a
- 【走向高考】2021屆高三生物二輪復(fù)習(xí)專項檢測:專題4-第3講-變異、育種與生物進(jìn)化
- 一年級數(shù)學(xué)計算題專項練習(xí)匯編
- 【名師一號】2020-2021學(xué)年蘇教版化學(xué)檢測題-選修五:專題3
- 《格林童話》課外閱讀試題及答案
- “銷售技巧課件-讓你掌握銷售技巧”
- 2019北師大版高中英語選修一UNIT 2 單詞短語句子復(fù)習(xí)默寫單
- 房地產(chǎn)項目保密協(xié)議
- 2023年云南省初中學(xué)業(yè)水平考試 物理
- 【安吉物流股份有限公司倉儲管理現(xiàn)狀及問題和優(yōu)化研究15000字(論文)】
- 火災(zāi)自動報警系統(tǒng)施工及驗收調(diào)試報告
- 《13464電腦動畫》自考復(fù)習(xí)必備題庫(含答案)
- 中國成人血脂異常防治指南課件
- 2023塔式太陽能熱發(fā)電廠集熱系統(tǒng)設(shè)計規(guī)范
- 消費稅改革對商貿(mào)企業(yè)的影響與對策
評論
0/150
提交評論