版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年甘肅省天水市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
2.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
3.
4.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
5.
6.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
7.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
8.
9.
10.
11.
A.-ex
B.-e-x
C.e-x
D.ex
12.
13.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。
A.有極小值B.有極大值C.既有極小值又有極大值D.無極值
14.
15.()。A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型16.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線17.
()A.x2
B.2x2
C.xD.2x18.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π
19.
20.
21.。A.2B.1C.-1/2D.0
22.
23.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度24.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-225.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
26.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
27.
28.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
29.
30.一飛機(jī)做直線水平運(yùn)動(dòng),如圖所示,已知飛機(jī)的重力為G,阻力Fn,俯仰力偶矩M和飛機(jī)尺寸a、b和d,則飛機(jī)的升力F1為()。
A.(M+Ga+FDb)/d
B.G+(M+Ga+FDb)/d
C.G一(M+Gn+FDb)/d
D.(M+Ga+FDb)/d—G
31.
32.A.
B.
C.
D.
33.
34.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)35.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
36.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa37.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)38.A.e2
B.e-2
C.1D.0
39.
40.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx41.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無窮小量,則k=()A.0B.1C.2D.3
42.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散43.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
44.
45.
46.
47.下列命題中正確的有().A.A.
B.
C.
D.
48.
A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確
49.
50.
二、填空題(20題)51.
52.
53.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.54.55.設(shè)z=x3y2,則=________。56.設(shè)z=sin(x2y),則=________。
57.
58.59.設(shè),則y'=______。60.設(shè)z=2x+y2,則dz=______。
61.62.設(shè),則y'=________。
63.
64.曲線f(x)=x/x+2的鉛直漸近線方程為__________。
65.微分方程y"=y的通解為______.
66.設(shè),將此積分化為極坐標(biāo)系下的積分,此時(shí)I=______.
67.
68.
69.
70.
三、計(jì)算題(20題)71.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
72.求微分方程的通解.73.將f(x)=e-2X展開為x的冪級(jí)數(shù).74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.
77.
78.證明:79.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.82.83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
84.
85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.86.求曲線在點(diǎn)(1,3)處的切線方程.
87.求微分方程y"-4y'+4y=e-2x的通解.
88.
89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).90.
四、解答題(10題)91.
92.
93.
94.
95.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
96.將f(x)=e-2x展開為x的冪級(jí)數(shù).
97.
98.
99.100.求y=xex的極值及曲線的凹凸區(qū)間與拐點(diǎn).五、高等數(shù)學(xué)(0題)101.設(shè)f(x)的一個(gè)原函數(shù)是lnx,求
六、解答題(0題)102.
參考答案
1.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
2.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
3.C
4.D
5.D
6.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
7.B?
8.B
9.D解析:
10.D解析:
11.C由可變上限積分求導(dǎo)公式有,因此選C.
12.A
13.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.
14.D
15.D
16.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
17.A
18.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
19.C
20.B
21.A
22.D
23.D
24.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
25.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
26.C解析:
27.B
28.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
29.C
30.B
31.C
32.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
33.B
34.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于存在,因此
可知應(yīng)選B.
35.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
36.C
37.A
38.A
39.C
40.B
41.B由等價(jià)無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。
42.C解析:
43.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
44.D
45.A解析:
46.B
47.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸?jí)數(shù)發(fā)散的充分條件使用.
48.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.
49.C
50.C
51.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。
52.53.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為54.F(sinx)+C本題考查的知識(shí)點(diǎn)為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
55.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。56.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。
57.-158.本題考查的知識(shí)點(diǎn)為定積分的基本公式。59.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。60.2dx+2ydy
61.發(fā)散
62.
63.
64.x=-265.y'=C1e-x+C2ex
;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
將方程變形,化為y"-y=0,
特征方程為r2-1=0;
特征根為r1=-1,r2=1.
因此方程的通解為y=C1e-x+C2ex.
66.
67.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
68.69.由可變上限積分求導(dǎo)公式可知
70.
71.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
72.
73.74.函數(shù)的定義域?yàn)?/p>
注意
75.
76.
77.
78.
79.
80.由等價(jià)無窮小量的定義可知
81.
82.
83.
84.
85.由二重積分物理意義知
86.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
87.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
88.由一階線性微分方程通解公式有
89.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)電腦交易協(xié)議格式(2024年)版A版
- 2025年度跨境電商平臺(tái)產(chǎn)品區(qū)域代理合同協(xié)議書4篇
- 科技前沿:資金驅(qū)動(dòng)創(chuàng)新
- 2025年度倉儲(chǔ)物流場(chǎng)地租賃保證金三方服務(wù)協(xié)議4篇
- 2025年度柴油運(yùn)輸合同書(智能化物流服務(wù))4篇
- 2025年度綠色環(huán)保型鏟車租賃合作協(xié)議4篇
- 2025年智能餐飲連鎖店合作協(xié)議范本3篇
- 2025年度特色面館連鎖品牌加盟管理規(guī)范合同范本3篇
- 2025年度商業(yè)地產(chǎn)項(xiàng)目場(chǎng)地合作運(yùn)營協(xié)議4篇
- 專業(yè)電線電纜供應(yīng)協(xié)議模板2024版
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 高職組全國職業(yè)院校技能大賽(嬰幼兒照護(hù)賽項(xiàng))備賽試題庫(含答案)
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- NB-T 47013.15-2021 承壓設(shè)備無損檢測(cè) 第15部分:相控陣超聲檢測(cè)
- 裝飾工程施工技術(shù)ppt課件(完整版)
- SJG 05-2020 基坑支護(hù)技術(shù)標(biāo)準(zhǔn)-高清現(xiàn)行
- 汽車維修價(jià)格表
- 10KV供配電工程施工組織設(shè)計(jì)
- 終端攔截攻略
- 藥物外滲處理及預(yù)防【病房護(hù)士安全警示教育培訓(xùn)課件】--ppt課件
評(píng)論
0/150
提交評(píng)論