廣西百色民族高級中學(xué)2022年高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
廣西百色民族高級中學(xué)2022年高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
廣西百色民族高級中學(xué)2022年高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
廣西百色民族高級中學(xué)2022年高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
廣西百色民族高級中學(xué)2022年高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.32.已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.3.函數(shù)在的圖象大致為()A. B.C. D.4.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.5.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.6.集合,則集合的真子集的個(gè)數(shù)是A.1個(gè) B.3個(gè) C.4個(gè) D.7個(gè)7.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.8.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.10.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.11.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.32二、填空題:本題共4小題,每小題5分,共20分。13.某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為________.14.已知內(nèi)角,,的對邊分別為,,.,,則_________.15.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動點(diǎn),在中,若的角平分線與相交于點(diǎn),則的取值范圍是_______.16.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的零點(diǎn)個(gè)數(shù);(2)證明:當(dāng)時(shí),.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).19.(12分)如圖,四棱錐中,底面是菱形,對角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.20.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.21.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為證明:.22.(10分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)椋?,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.2.A【解析】

利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.3.B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.4.C【解析】

根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5.D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.6.B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個(gè)數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個(gè)數(shù)為個(gè),故選B.【點(diǎn)睛】本題主要考查了集合的運(yùn)算和集合中真子集的個(gè)數(shù)個(gè)數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個(gè)數(shù)的公式作出計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.7.D【解析】

當(dāng)時(shí),函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.8.C【解析】

設(shè)公差為,則由題意可得,解得,可得.令

,可得

當(dāng)時(shí),,當(dāng)時(shí),,由此可得數(shù)列前項(xiàng)和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,

則,解得

,.

,可得,故當(dāng)時(shí),,當(dāng)時(shí),,

故數(shù)列前項(xiàng)和中最小的是.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.9.C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.10.D【解析】

以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11.D【解析】

根據(jù)題意,對于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當(dāng),若為增函數(shù),則①,

當(dāng),若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).12.A【解析】

根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三個(gè)年級人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設(shè)高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人.故答案為:.【點(diǎn)睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關(guān)知識,屬于基礎(chǔ)題.14.【解析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點(diǎn)睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.15.【解析】

由角平分線成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線,由角平分線成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動點(diǎn)的軌跡方程,屬于中檔題.16.【解析】由題意得,二項(xiàng)式展開式的通項(xiàng)為,令,則,所以得系數(shù)為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見解析【解析】

(1)求出,分別以當(dāng),,時(shí),結(jié)合函數(shù)的單調(diào)性和最值判斷零點(diǎn)的個(gè)數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時(shí),,單調(diào)遞減,,,此時(shí)有1個(gè)零點(diǎn);當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時(shí)沒有零點(diǎn);若,則,此時(shí)有1個(gè)零點(diǎn);若,則,,求導(dǎo)易得,此時(shí)在,上各有1個(gè)零點(diǎn).綜上可得時(shí),沒有零點(diǎn),或時(shí),有1個(gè)零點(diǎn),時(shí),有2個(gè)零點(diǎn).(2)令,則,當(dāng)時(shí),;當(dāng)時(shí),,∴.令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴,∴,,∴,即.【點(diǎn)睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點(diǎn)問題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點(diǎn)在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.18.(1);(2)最小值為,此時(shí)【解析】

(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時(shí),,是最小值,此時(shí),所以,所求最小值為,此時(shí)【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.19.(1)詳見解析;(2)詳見解析.【解析】

(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對角線的交點(diǎn),為的中點(diǎn),是棱的中點(diǎn),平面平面平面解:在菱形中,且為的中點(diǎn),,,平面平面,平面平面.【點(diǎn)睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.20.(1)證明見解析;(2)【解析】

(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴函數(shù)在上單調(diào)遞增.又,令,,則在上單調(diào)遞減,,故.令,則所以函數(shù)在上存在唯一的零點(diǎn).(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.∴當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點(diǎn)個(gè)數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點(diǎn)個(gè)數(shù)時(shí),可結(jié)合函數(shù)的單調(diào)性以及零點(diǎn)的存在性定理進(jìn)行判斷;(2)函數(shù)的“隱零點(diǎn)”問題,可通過“設(shè)而不求”的思想進(jìn)行分析.21.(1)(2)證明見解析【解析】

(1)因?yàn)?,所以,所以,即,又因?yàn)椋詳?shù)列為等差數(shù)列,且公差為1,首項(xiàng)為1,則,即.設(shè)的公差為,則,所以(),則(),所以,因此,綜上,.(2)設(shè)數(shù)列的前n項(xiàng)和為,則兩式相減得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論