2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省揭陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.點(diǎn)作曲線(xiàn)運(yùn)動(dòng)時(shí),“勻變速運(yùn)動(dòng)”指的是()。

A.aτ為常量

B.an為常量

C.為常矢量

D.為常矢量

4.

5.

6.由曲線(xiàn),直線(xiàn)y=x,x=2所圍面積為

A.

B.

C.

D.

7.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.4

8.

9.

10.

11.

12.A.A.

B.

C.

D.

13.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合14.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。

A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度

15.下列各式中正確的是

A.A.

B.B.

C.C.

D.D.

16.

17.

18.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

19.若y=ksin2x的一個(gè)原函數(shù)是(2/3)cos2x,則k=

A.-4/3B.-2/3C.-2/3D.-4/3

20.

二、填空題(20題)21.

22.設(shè)曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,則該切線(xiàn)方程為.

23.

24.25.26.27.

28.

29.不定積分=______.

30.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

31.

32.函數(shù)f(x)=在[1,2]上符合拉格朗日中值定理的ξ=________。

33.

34.

35.36.37.38.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為_(kāi)_______。39.40.三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.

43.

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.46.47.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).49.求微分方程的通解.

50.

51.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).52.

53.證明:54.55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.56.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

60.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

四、解答題(10題)61.

62.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點(diǎn)的直線(xiàn)交曲線(xiàn)y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點(diǎn)ξ使得f''(ξ)=0.

63.

64.

65.

66.

67.

68.計(jì)算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.

69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)

求df(t)

六、解答題(0題)72.

參考答案

1.C

2.B

3.A

4.C解析:

5.B

6.B

7.A由于可知收斂半徑R==1.故選A。

8.C

9.A

10.A

11.B

12.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

13.A平面π1的法線(xiàn)向量n1=(2,1,4),平面π2的法線(xiàn)向量n2=(2,-8,1),n1*n1=0??芍獌善矫娲怪保虼诉xA。

14.D

15.B本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

對(duì)于選項(xiàng)A,當(dāng)0<x<1時(shí),x3<x2,則。對(duì)于選項(xiàng)B,當(dāng)1<x<2時(shí),Inx>(Inx)2,則。對(duì)于選項(xiàng)C,對(duì)于選讀D,不成立,因?yàn)楫?dāng)x=0時(shí),1/x無(wú)意義。

16.C解析:

17.B

18.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

19.D解析:

20.A

21.22.y=f(1).

本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線(xiàn)方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線(xiàn)y=f(x)過(guò)該點(diǎn)的切線(xiàn)方程為

y-f(x0)=f(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線(xiàn)y=f(x)的切線(xiàn)平行于x軸,因此應(yīng)有f(x0)=0,故所求切線(xiàn)方程為

y—f(1)=0.

本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程寫(xiě)為

y-f(x0)=f(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為

y-f(1)=f(x)(x-1).

本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線(xiàn)方程為

y-1=0.

23.(02)(0,2)解析:

24.<025.3yx3y-1

26.本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.

由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知

27.

28.

29.

;本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.

30.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。

31.

32.由拉格朗日中值定理有=f"(ξ),解得ξ2=2,ξ=其中。

33.(-33)(-3,3)解析:

34.(-22)

35.

36.

37.(-21)(-2,1)38.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。39.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)為奇函數(shù),因此

40.12dx+4dy.

本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

42.43.由一階線(xiàn)性微分方程通解公式有

44.

45.

46.

47.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

48.

列表:

說(shuō)明

49.

50.

51.

52.

53.

54.55.由二重積分物理意義知

56.

57.

58.由等價(jià)無(wú)窮小量的定義可知59.函數(shù)的定義域?yàn)?/p>

注意

60.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%61.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的應(yīng)用.

單調(diào)增加區(qū)間為(0,+∞);

單調(diào)減少區(qū)間為(-∞,0);

極小值為5,極小值點(diǎn)為x=0;

注上述表格填正確,則可得滿(mǎn)分.

這個(gè)題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;求函數(shù)的極值與極值點(diǎn);求曲線(xiàn)的凹凸區(qū)間與拐點(diǎn).62.由題意知f(a)=f(b)=f(c),在(a,c)內(nèi)有一點(diǎn)η1,使得f'(η1)=0,在(c,6)內(nèi)有一點(diǎn)η2,使得f'(η2)=0,這里a<η1<c<b,再由羅爾定理,知在(η1,η2)內(nèi)有一點(diǎn)ξ使得f''(ξ)=0.

63.

64.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)'f(x)無(wú)意義,則間斷點(diǎn)為

x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論