版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省肇慶市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
A.1B.0C.-1D.-2
2.
3.A.
B.
C.
D.
4.
5.A.I1=I2
B.I1>I2
C.I1<I2
D.無法比較
6.
A.
B.
C.
D.
7.
8.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
9.A.A.4B.3C.2D.1
10.A.0B.1C.2D.任意值
11.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
12.
13.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
14.A.e
B.e-1
C.-e-1
D.-e
15.下列關(guān)系正確的是()。A.
B.
C.
D.
16.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
17.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
18.A.A.1/2B.1C.2D.e
19.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
20.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
二、填空題(20題)21.若=-2,則a=________。
22.
23.
24.設(shè)f(x)=x(x-1),則f'(1)=__________。
25.
26.
27.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=.
28.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
29.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
30.
31.y=lnx,則dy=__________。
32.
33.
34.設(shè)y=cos3x,則y'=__________。
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
43.
44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
45.證明:
46.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
52.將f(x)=e-2X展開為x的冪級數(shù).
53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
55.
56.
57.
58.
59.求曲線在點(diǎn)(1,3)處的切線方程.
60.求微分方程的通解.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.f(x)=lnx在x=1處的切線方程__________。
六、解答題(0題)72.計(jì)算
參考答案
1.A
本題考查的知識點(diǎn)為導(dǎo)數(shù)公式.
可知應(yīng)選A.
2.C解析:
3.B
4.A
5.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
6.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
7.A
8.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
9.C
10.B
11.C解析:
12.C解析:
13.D
14.B所給極限為重要極限公式形式.可知.故選B.
15.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。
16.A本題考查的知識點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
17.C本題考查的知識點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
18.C
19.B本題考查的知識點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
20.A
21.因?yàn)?a,所以a=-2。
22.33解析:
23.
本題考查的知識點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
24.
25.55解析:
26.1.
本題考查的知識點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
27.0.
本題考查的知識點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f(0)=0.
28.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。
29.cosxcosx解析:本題考查的知識點(diǎn)為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.
30.
31.(1/x)dx
32.
33.
本題考查的知識點(diǎn)為定積分運(yùn)算.
34.-3sin3x
35.
36.
37.
38.
39.
40.x
41.
42.
43.
則
44.
45.
46.
47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
48.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
49.由二重積分物理意義知
50.
51.
列表:
說明
52.
53.由等價(jià)無窮小量的定義可知
54.函數(shù)的定義域?yàn)?/p>
注意
55.
56.
57.由一階線性微分方程通解公式有
58.
59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.
62.解
63.
64.
65.
66.
67.本題考查的知識點(diǎn)為求解-階線性微分方程.
將方程化為標(biāo)準(zhǔn)形式
求解一階線性微分方程??梢圆捎脙煞N解法:
解法1利用求解公式,必須先將微分方程化為標(biāo)準(zhǔn)形式y(tǒng)+p(x)y=q(x),則
解法2利用常數(shù)變易法.
原方程相應(yīng)的齊次微分方程為
令C=C(x),則y=C(x)x,代入原方程,可得
可得原方程通解為y=x(x+C).
本題中考生出現(xiàn)的較常見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年年托育項(xiàng)目資金申請報(bào)告代可行性研究報(bào)告
- 酒店餐飲部食品安全與員工健康管理制度
- 中考加油演講稿600字(28篇)
- 《采購談判方案》課件
- 《修效用與需求》課件
- 《計(jì)量專業(yè)實(shí)務(wù)》課件
- 匯報(bào)課件:山區(qū)鄉(xiāng)土資源的創(chuàng)造性開發(fā)與利用
- 黑龍江省肇東一中2025屆高三(最后沖刺)語文試卷含解析
- 2025屆上海市徐匯區(qū)上海第四中學(xué)高三最后一卷語文試卷含解析
- 2025屆四川省成都實(shí)驗(yàn)中學(xué)高三第三次模擬考試英語試卷含解析
- 高一完型填空
- (完整版)小學(xué)美術(shù)興趣小組活動(dòng)記錄
- 學(xué)生軍訓(xùn)十天訓(xùn)練安排
- 古代二十八宿對照表
- 蘇教版五年級數(shù)學(xué)上冊第九單元《整理與復(fù)習(xí)》全部教案(共5課時(shí))
- 法務(wù)部管理規(guī)章制度.doc
- 手機(jī)整機(jī)結(jié)構(gòu)設(shè)計(jì)規(guī)范
- 功能高分子材料 導(dǎo)電高分子材料ppt課件
- 中國三對三籃球聯(lián)賽比賽記錄表
- 山東省普通高中學(xué)生發(fā)展報(bào)告(共37頁)
- “一步法”煤基直接還原技術(shù)探討
評論
0/150
提交評論