




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ContinuousMediaZhengJiangChongqingUniversityApril-13-2016Outline1Objectives2ConservationAndContinuityEquations3ConstitutiveEquations4BoundaryandInitialConditions1ObjectivesIntroducetheequationsofconservationofmass,solute,momentumandenergy.IntroducetheprincipalequationsformaterialsbehaviorDefinetheboundaryconditionsandinitialconditions.介紹質(zhì)量守恒。。。。。。。。。介紹材料特性(材料力學(xué)行為)的主要公式解釋邊界條件和初始條件Theequationsofelectromagnetismwillnotbecoveredhere;wewilldiscussconservationofmass,ofmomentum,ofenergyandofsolute.Next,wewillcoverthemostimportantconstitutiveequationsformaterialbehaviorthatconnect,forexample:stresstostrainortovelocityindeformationorflowproblems;orenthalpyandheatfluxtotemperatureinheattransfercalculations;or,finally,thefluxofsolutetoconcentrationindiffusion.Thederivationoftheseequationswillbedoneintheperspectiveofsubsequentapplicationsthatmayinvolvetwodifferentscales.方程的推導(dǎo)將運(yùn)用在兩個(gè)尺度Atthemacroscopiclevel,theconservationandconstitutiveequationsallowmodeling,orevenoptimization,ofanindustrialprocessorsimulationofthebehaviorofasampleundergoingmechanicaltesting.在宏觀尺度,守恒和本構(gòu)方程允許建模,甚至優(yōu)化of一個(gè)工業(yè)過(guò)程或行為的模擬of進(jìn)行機(jī)械測(cè)試的樣本Atthemicroscopicscale,theequationscanbeusedtodescribetheformationandevolutionofthemicrostructure(dendrites,spherulites,lamellae,orfibers,etc.),theinteractionbetweenafiberandthematrixincompositematerials,orthedeformationofacrystallatticearoundadislocation.在微觀層面,方程可以用來(lái)描述微觀結(jié)構(gòu)的形成和演化(樹(shù)突,球晶、薄片或纖維,等等),纖維和基質(zhì)之間的相互作用in復(fù)合材料or一個(gè)位錯(cuò)周?chē)木Ц竦淖冃巍omogenizationRollingAnnealCasting1mEngineBlock1-10mmMacrostructureGrainsMacroporosityPropertiesHigh-cyclefatigueDuctility~100-500mMicrostructureEutecticPhaseMicroporosityIntermetallicPropertiesYieldstrengthTensilestrengthHigh-cyclefatigueLow-cyclefatigueThermalGrowthDuctility~10-100?AtomaticStructureCrystalStructureInterfaceStructurePropertiesThermalGrowthYieldstrength~3-100nmNanostructurePrecipitatePropertiesYieldstrengthThermalGrowthTensilestrengthLow-cyclefatigueDuctilityBasedonprocessingflowchartBasedonthemetallurgicallengthscalesFigure1Thedifferentscalesappearinginmaterialsscience.Aturbineblade(a),solidifiedinaceramicmold(investmentcasting),measuresafewdozencentimeters.Itiscomposedofgrainswhichareclearlyvisibleafterchemicaletching(scale:afewmillimeters),whichthemselvesaremadeupofdendriteswhicharespacedatafewdozentohundredsofmicrons(b).In(c)isshownaschematicatatomicscaleofthetransformationfromaliquidtoasolidforametalalloyduringtheformationofsuchabladebyprecisioncasting.1.2ConservationandContinuityEquationsFigure2Inthecontinuouscastingofaluminum(a),liquidmetalisinjectedfromanozzlethroughadistributionbagwhichfiltersoutinclusionsandoxideskindebris.Themetalcoolsoncontactwithamold,whichitselfiscooledbycirculatingwaterandwaterspraying.Solidmetalisextractedcontinuouslybyajackattachedtoabottomblock.Convectionintheliquid(indicatedbyarrows)cantransportgrowinggrainsofaluminuminthe‘mushy'region(b)Theenvironmentisnothomogeneousasitiscomposedofatleasttwophase,namelysolidandliquid.Thephenomenaoccursatmultiscale.Itcanbedescribedbyfourconservationequations(mass,momentum,energyandsolute)Thetypeofbehavior(elastic,plastic,viscous,etc.)andalsothevaluesofthermo-mechanicalpropertiesofthematerial(specificmass,viscosity,elasticmodulus,strain-hardeningcoefficient,thermalconductivity,etc.)enterintotheconstitutiveequationsforthedifferentphasesofthematerials.NoticeFigure3Afewareasofmaterialssciencewheremodelingplaysanimportantrole:polymerinjection(a),waterdiffusioninconcrete(b),deformationofatestspecimenundertension(c)1.2.1Definition“Nothingislost,nothingiscreated,everythingistransformed”-------
Lavoisier‘sprincipleFigure4Diagramofthecalculationdomainnanditsboundaryon(a).Theoutgoingnormalvectornandthetangentvectorτarealsoshown.Inthreedimensions(b),theretwotangentvectors.In(c),thevolumeelementΔVisshownwiththevelocitiesinthemediaateachfaceforthederivationoftheconservationequations.Ω的計(jì)算范圍和邊界?Ω是圖a,向外的法向量和切向量也如圖示;在b中的三維圖里,有兩個(gè)切向量;c中,體積元素ΔV和它在介質(zhì)中每個(gè)表面的速度一起顯示出來(lái),用于本構(gòu)方程的推導(dǎo)。Inthefirst,calledtheLagrangian,analogoustotraditionalmechanics,wefollowthematerialelementthroughitsmovements(Forsoliddeformation);拉格朗日,類(lèi)似于經(jīng)典力學(xué),我們遵從材料元素的運(yùn)動(dòng)Secondly,Eulerian,thereferenceframeisfixedandwewatchwhathappensatapointasafunctionoftime.(Forfluidmechanics)歐拉,修正了參考坐標(biāo)系,并且我們能觀察到隨時(shí)間發(fā)生了什么Twopossibleapproachedtodescribeconservation(ofmass,energy,momentum,etc)AslongasthedomainΔVissmall,wecanmaketheassumptionthat,oneachface,thevaluesconsideredareconstant.
ΔV足夠小時(shí),我們能夠假設(shè),在每個(gè)面(所取的ΔV)上,值是恒定不變的。1.2.2
EquationofconservationofmassThissumincludesonlythetwocontributionsexpressingthatthemassvariationinsidetheelementmustbeduetotransferofmassacrossthefacesbythevelocityfieldv.
Thereisnodiffusion,norproductionofmass.Themassvariationinsidetheelementisgivenby:ThetotalquantityofmaterialleavingthevolumeΔVisgivenby:Theintegral(1.2)canbemanipulatedas:Thereisneitherlossnorcreationofmaterial:Stationarycase:Incompressible:1.2.3ConservationofsoluteAsforthemasssumderivedabove,atemporalvariationofthequantityinsolutioninthevolumeelementaswellasatransporttermcontainingthevelocityfieldwillappearinthesum.Twonewcontributionsneedtobetakenintoaccount.Thefirstisadiffusiveterm擴(kuò)散項(xiàng)
associatedwithconcentrationgradients.Thesecondisasource
term(orsink)forchemicalreactions.isthenumberofmolesthatappearordisappearlocallyperunittimeandunitvolume.Weobtainthelocalequationfortheconservationofsolute.Formassspecificconcentration.1.2.4ConservationofmomentumFigure5Thesurfaceforces,T,andthegravityforce,ρg,actingonasmallvolumeelementΔV.Takingthesumofthecontributionstotheforcesactingonthesurfaceandonthevolume,weobtainforthecomponentx:Themomentumfluxinthexdirectionenteringorleavingthedomainisgivenby:Weobtainforthexcomponentoftheconservationofmomentum:Allthreedirectionalcomponentsofthemomentumcanbeexpressedasfollows:Forquasi-staticproblem:1.2.5Displacement,strain,strainrateOveraperiodoftime,displacementsofthematerialoccurduetotheappliedstressandvolumeforces.InLagrangiancoordinates,themovementofthematerialisdescribedbythesetoftrajectoriesofallthepointsinthematerial:,wherexoistheinitialpositionofapointattimet=0Thedisplacementu(xo,t)ofapointxoattimetisnaturallydefinedasthedifferencebetweenitspositionattimetanditsinitialposition:Figure7Forgingofasolidtoobtainacomplexform(a)andtwo-dimensionalrepresentationofthedisplacements(b)forsuchaprocessTosimplifytheexpression,itisnecessaryatthisstagetoswitchtothecoordinatenotation(x1,x2,x3)inplaceof(x,y,z).WhereistheKroneckerdeltafunctionThisequationdefinesthegradienttensorofthetransformationF=I+Gradu.Theresultisasymmetricsecondordertensor,a3x3matrixcalledtherightCauchy-Greenstraintensor,orCauchy'sdilatationtensor,Returbingtothe(x,y,z)coordinates,thesymmetricstraintensoriswritten:Figure8Illustrationofthedifferentelementarystraincomponentsforaparallelepiped.Wheredesignatesthevelocityvectorassociatedwiththedisplacementvectoru.ThisvelocityissimplythatofapointinLagrangiancoordinates:EngineeringstrainThe
engineeringnormalstrain
or
engineeringextensionalstrain
or
nominalstrain
e
ofamateriallineelementorfiberaxiallyloadedisexpressedasthechangeinlengthΔL
perunitoftheoriginallength
L
ofthelineelementorfibers.Thenormalstrainispositiveifthematerialfibersarestretchedandnegativeiftheyarecompressed.Thus,wehave
eisthe
engineeringnormalstrain,
Listheoriginallengthofthefiberandislisthefinallengthofthefiber.
StretchstrainTheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThisequationimpliesthatthenormalstrainiszero,sothatthereisnodeformationwhenthestretchisequaltounity.TheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThe
truestrain
ε,(althoughnothingisparticularly"true"aboutitcomparedtoothervaliddefinitionsofstrain).Consideringanincrementalstrain.thetruestrainisobtainedbyintegratingthisincrementalstrain:where
e
istheengineeringstrain.Thetruestrainprovidesthecorrectmeasureofthefinalstrainwhendeformationtakesplaceinaseriesofincrements,takingintoaccounttheinfluenceofthestrainpath.TruestrainTheGreenstrainisdefinedas:GreenstrainAlmansistrainTheAlmansistrainisdefinedas:NormalstrainConsideratwo-dimensionalinfinitesimalrectangularmaterialelementwithdimensions
,whichafterdeformation,takestheformofarhombus.FromthegeometryoftheadjacentfigurewehaveForverysmalldisplacementgradientsthesquaresofthederivativesarenegligibleandwehaveThenormalstraininthex
directionoftherectangularelementisdefinedbySimilarly,thenormalstrainintheydirection,andzdirectionbecomes
ShearstrainTheengineeringshearstrain()isdefinedasthechangeinanglebetweenlinesand,thereforeFromthegeometryofthefigure,wehaveForsmalldisplacementgradientswehaveForsmallrotations,i.e.αandβare,wehavetanα≈
α,tanβ
≈
β,thereforeByinterchangingxandyanduxanduy,itcanbeshownthat,similarly,forthey-zplaneandz-xplane,wehaveGeneralthree-dimensionalbodywithan8-nodethree-dimensionalelement1.2.6VirtualpowerThebodyislocatedinthefixed(stationary)coordinatesystemX,Y,ZConsideringthebodysurfacearea,thebodyissupportedontheareaSuwithprescribeddisplacementsUSuandissubjectedtosurfaceforcesfsf(forcesperunitsurfacearea)onthesurfaceareaSf.ThebodyissubjectedtoexternallyappliedbodyforcesfB(forcesperunitvolume)andconcentratedloadsRc(whereidenotesthepointofloadapplication).WeintroducetheforcesRcasseparatequantities,althougheachsuchforcecouldalsobeconsideredsurfacetractionsfsfoveraverysmallarea.Ingeneral,theexternallyappliedforceshavethreecomponentscorrespondingtotheX,Y,Zcoordinateaxes:U=USuonthesurfacearea.ThestrainscorrespondingtoUareCisthestress-strainmaterialmatrixandthevector
denotesgiveninitialstresses1.2.7ConservationofEnergyIngeneral,thefirstlawofthermodynamicstellsusthatthevariationoftotalenergyofadomainunderconsiderationisduetothemechanicalpoweroftheexternalforces,Pmech,andthecaloricpowerapplied,PcalThetotalenergyiscomposedofthekineticenergy,Ebandtheinternalenergy,Ej.Puttingallthetermstogether:Thesumofthefirstthreetermsontherighthandsideoftheequationisthedeformationpower.1.2.8UnifiedformoftheconservationequationsTheconservationequationsderivedabovearesimilarinthattheyallcontainatemporalvariationterm,anadvectivetransportterm,andsomehaveadiffusiontermandasourceterm.Theycanbereducedtoasinglegeneralequation:1.3ConstitutiveEquationsIn
physics
and
engineering,a
constitutiveequation
or
constitutiverelation
isarelationbetweentwophysicalquantities.1.3.1Constitutiveequationsformass1.3.2ConstitutiveequationsforsoluteFigure9DiagramofdiffusionaccordingtoFick'sfirstlawrelatingthechemicalfluxtotheconcentrationgradientThefluxcangenerallybeexpressedintermsofthegradientoftheconcentrationbyFick’sfirstlaw:whereDjisthediffusioncoefficient.1.3.3ConstitutiveequationsforEnergyConsideringthepressureconstant,whichisagoodapproximationforcondensedmatter,thespecificenthalpyofaphase,H,isgivenby:whereKisthethermalconductivityofthematerial.Thediffusiveheatflux,jT,isgivenbyanequationsimilartoFick'sfirstlaw(Fourier’slaw):whereEistheelectricalfield(Voltage),jEtheelectricalcurrentdensity,andρEelectricalresistivity.Inthecaseofchemicalreactions,theheatsourcetermbecomesasumoverallthechemicalspecies:Thesourcetermintroducedbyaphasetransformationwillbetreatedindetailinchapter5.Strictlyspeaking,thelatentheatperunitmass,Lα/β,associatedwithaphasetransformationα→β,isnotavolumetricsourcetermasitisproducedatthemovinginterfaceα/β.1.3.4ConstitutiveequationsforMaterials:quasi-staticcaseInthesimplestcase,thatoflinearelasticity,wetrytorelatethestresstensorσtothestrainε(x,y,z).Beingsymmetric,(σij=σjiandεij=εji),thesetwotensorsonlyhavesixindependentcomponents.Inthecoordinates(x,y,z),Hooke’slawrelatingthesixcomponentstakestheform:Thematrix[Del]istheelasticitymatrix.whereEistheelasticmodulusandvpisPoisson’scoefficient.Assumingthatthematerialisstretchedorcompressedalongtheaxialdirection:Acubewithsidesoflength
L
ofanisotropiclinearlyelasticmaterialsubjecttotensionalongthexaxis,withaPoisson‘sratioofν.Thegreencubeisunstrained,theredisexpandedinthe
x
directionbyduetotension,andcontractedinthe
y
and
z
directionsby?Lduetotension,andcontractedinthe
y
and
z
directionsby
?L’.Therelativechangeofvolume
ΔV/V
ofacubeduetothestretchofthematerialcannowbecalculated.UsingV=L3andV+ΔV=(L+ΔL)(L-ΔL’)2(x+Δx)1-2ν
=x1-2ν+(1-2ν)·x-2ν
·Δx-
2ν(1-2ν)·x-2ν-1
·Δx2………
Theproblemencounteredinmaterialsscienceisthatmostofthetimethematerialdoesnothavelinearelasticbehavior;rather,itcanundergoplasticstrain,εpl.Inadditiontothiscomponent,othersofathermalnature,εth,orassociatedwithphasetransformations,εtr(volumechanges),cancontributetothelocaltotalstrain,ε,givenby(1.36).Ingeneral,onehas:1.4BoundaryandInitialConditions1.4.1GeneralitiesInanonstationaryproblem,thefirsttermoftheequationrequiresthespecificationofthevaluesofthefield(x,t=0)ateverypointinthedomainΩattimet=0.Thisistheinitialcondition.Inthesameequation,therearetwointegralsontheboundaryofthedomain:thefirstinvolvesthenormalvelocitycomponent,vn=v·n,andcorrespondstothetransportofthequantityacrossthesurface,whereasthesecondisrelatedtothefluxenteringorleavingthedomainatthesurfacebydiffusion,j=j·n.n.Itcanbeseenthatitwillbenecessarytospecifythesetermsatthesurfacetodeterminewhathappensintheinterior.Theseareboundaryconditions.Theboundaryconditionsfordiffusiveproblemsaredividedintotwotypes:I.Anaturalconditionexpressesdirectlythevalueofjontheboundary.Threecasesofthistypearegenerallyconsidered:I.1ThehomogeneousNeumannconditionisanullflux:I.2TheNeumannconditioncorrespondstoanonzerofluxgivenontheboundary:I.3TheCauchyormixedconditionconsistsofalinearrelationbetweenthefluxandthevalueofthevariableitself:II.AnessentialconditionoraDirichletconditionconsistsofspecifyingthevariabledirectlyratherthanthediffusiveflux,Thebaroverthevariableontherightindicatesthatitisanimposedvalue.Thisvaluecanbeafunctionofpositionandtime.1.4.2SolutetransferAnessentialconditionmeansspecifyingthevalueofconcentrationofsoluteionapartofthedomainboundary.ThenaturalhomogeneousNeumanncondition,AnaturalnonhomogeneousNeumannconditioncorrespondstoafixed,nonzero,solutefluxatthesurface.Amixed,Cauchy,boundaryconditioncanbeexpressedintheform:whereαisachemicaltransfercoefficientbetweenthesur
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 3-3編碼器1電子課件教學(xué)版
- 糧食倉(cāng)儲(chǔ)企業(yè)綠色稅收政策考核試卷
- 玻璃管道生產(chǎn)考核試卷
- 油氣倉(cāng)儲(chǔ)與能源安全風(fēng)險(xiǎn)管理體系構(gòu)建策略研究考核試卷
- 殘疾人座車(chē)內(nèi)飾設(shè)計(jì)與材料選擇考核試卷
- 游樂(lè)設(shè)施施工電氣安全知識(shí)考核試卷
- 電氣設(shè)備數(shù)字化設(shè)計(jì)與制造考核試卷
- 電機(jī)專(zhuān)利技術(shù)考核試卷
- 竹漿在紙品印刷適應(yīng)性改進(jìn)的技術(shù)研究考核試卷
- 紗線國(guó)際貿(mào)易的風(fēng)險(xiǎn)防范考核試卷
- 人教版四年級(jí)下冊(cè)數(shù)學(xué)第三單元《運(yùn)算律》(同步練習(xí))
- 電力建設(shè)項(xiàng)目工程結(jié)算編制講義
- 【MOOC】中國(guó)近現(xiàn)代史綱要-浙江大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- GB/T 21477-2024船舶與海上技術(shù)非金屬軟管組件和非金屬補(bǔ)償器的耐火性能試驗(yàn)方法
- 設(shè)備運(yùn)輸包裝方案
- 高中信息技術(shù)《走近人工智能》教學(xué)設(shè)計(jì)
- 第八章 堅(jiān)持以促進(jìn)國(guó)際安全為依托-國(guó)家安全教育大學(xué)生讀本教案
- 建設(shè)工程施工合同糾紛起訴狀范本6篇
- 中華人民共和國(guó)保守國(guó)家秘密法實(shí)施條例培訓(xùn)課件
- 2024年飲料供應(yīng)鏈銷(xiāo)售與分銷(xiāo)協(xié)議
- 翼狀胬肉患者護(hù)理查房
評(píng)論
0/150
提交評(píng)論