2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)_第1頁
2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)_第2頁
2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)_第3頁
2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)_第4頁
2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年河北省張家口市成考專升本高等數(shù)學一自考預(yù)測試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.

3.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

4.

5.A.A.

B.x2

C.2x

D.2

6.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

7.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

8.

A.arcsinb-arcsina

B.

C.arcsinx

D.0

9.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性

10.

11.設(shè)f'(x)在點x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-2

12.

13.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

14.

15.

16.

17.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面18.A.A.xy

B.yxy

C.(x+1)yln(x+1)

D.y(x+1)y-1

19.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

20.

21.

22.設(shè)f(x)在點x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

23.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

24.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)25.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

26.設(shè)函數(shù)y=(2+x)3,則y'=

A.(2+x)2

B.3(2+x)2

C.(2+x)4

D.3(2+x)4

27.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

28.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)29.設(shè)x2是f(x)的一個原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

30.微分方程y"-y=ex的一個特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

31.

32.

33.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

34.

35.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當小環(huán)M運動到圖示位置時(以MO為坐標原點,小環(huán)Md運動方程為正方向建立自然坐標軸),下面說法不正確的一項是()。

A.小環(huán)M的運動方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

36.

37.

38.

39.A.A.Ax

B.

C.

D.

40.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

41.下列關(guān)于動載荷的敘述不正確的一項是()。

A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計

B.勻速直線運動時的動荷因數(shù)為

C.自由落體沖擊時的動荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

42.

43.建立共同愿景屬于()的管理觀念。

A.科學管理B.企業(yè)再造C.學習型組織D.目標管理

44.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

45.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

46.設(shè)y=5x,則y'=A.A.5xln5

B.5x/ln5

C.x5x-1

D.5xlnx

47.若,則()。A.-1B.0C.1D.不存在48.

[]A.e-x+C

B.-e-x+C

C.ex+C

D.-ex+C

49.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量50.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)

B.c1y1(x)+y2(x)

C.y1(x)+y2(x)

D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).

二、填空題(20題)51.設(shè),且k為常數(shù),則k=______.52.

53.

54.

55.

56.

57.

58.

59.

60.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點ξ,使得f(b)-f(a)=________。

61.

62.微分方程y"=y的通解為______.

63.ylnxdx+xlnydy=0的通解是______.

64.

65.

66.67.微分方程y+9y=0的通解為________.68.69.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

70.曲線y=1-x-x3的拐點是__________。

三、計算題(20題)71.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.72.

73.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

74.將f(x)=e-2X展開為x的冪級數(shù).75.

76.

77.當x一0時f(x)與sin2x是等價無窮小量,則78.求曲線在點(1,3)處的切線方程.79.80.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.81.證明:82.求微分方程的通解.83.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.

84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

85.

86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

87.求微分方程y"-4y'+4y=e-2x的通解.

88.

89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.90.四、解答題(10題)91.92.93.94.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.

95.96.求方程(y-x2y)y'=x的通解.

97.

98.

99.

100.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.五、高等數(shù)學(0題)101.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸六、解答題(0題)102.

參考答案

1.C

2.D

3.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標分別代入所設(shè)平面方程,可得方程組

故選A.

4.A

5.D本題考查的知識點為原函數(shù)的概念.

可知應(yīng)選D.

6.B本題考查了曲線所圍成的面積的知識點,

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

7.C

8.D

本題考查的知識點為定積分的性質(zhì).

故應(yīng)選D.

9.A

10.B

11.C本題考查的知識點為極值的必要條件;在一點導(dǎo)數(shù)的定義.

由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而

可知應(yīng)選C.

12.B解析:

13.B本題考查了一階線性齊次方程的知識點。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時也可用變量分離.

14.A解析:

15.A

16.A

17.B本題考查的知識點為識別二次曲面方程.

由于二次曲面的方程中缺少一個變量,因此它為柱面方程,應(yīng)選B.

18.C

19.D本題考查的知識點為偏導(dǎo)數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。

20.D解析:

21.B

22.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。

23.C解析:本題考查的知識點為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

24.Dy=ex+e-x,則y'=ex-e-x,當x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.

25.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

26.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識點。因為y=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.

27.B本題考查的知識點為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運用.

注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

28.B

29.A由于x2為f(x)的一個原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

30.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

31.A

32.D解析:un、vn可能為任意數(shù)值,因此正項級數(shù)的比較判別法不能成立,可知應(yīng)選D。

33.C

34.A

35.D

36.A

37.C解析:

38.B解析:

39.D

40.B本題考查的知識點為不定積分換元積分法。

因此選B。

41.C

42.B

43.C解析:建立共同愿景屬于學習型組織的管理觀念。

44.D

45.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當x=0時,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.

46.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。

47.D不存在。

48.B

49.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

50.D

51.本題考查的知識點為廣義積分的計算.

52.

53.1

54.

55.3/2本題考查了函數(shù)極限的四則運算的知識點。

56.0<k≤1

57.

58.

59.33解析:

60.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

61.1/(1-x)262.y'=C1e-x+C2ex

;本題考查的知識點為二階常系數(shù)線性齊次微分方程的求解.

將方程變形,化為y"-y=0,

特征方程為r2-1=0;

特征根為r1=-1,r2=1.

因此方程的通解為y=C1e-x+C2ex.

63.(lnx)2+(lny)2=C

64.1/21/2解析:

65.11解析:

66.

本題考查的知識點為初等函數(shù)的求導(dǎo)運算.

本題需利用導(dǎo)數(shù)的四則運算法則求解.

本題中常見的錯誤有

這是由于誤將sin2認作sinx,事實上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

67.

本題考查的知識點為求解可分離變量微分方程.

68.解析:69.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

70.(01)

71.

72.

73.

74.

75.

76.77.由等價無窮小量的定義可知78.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論