2023屆廣東省汕頭市潮陽區(qū)銅盂中學數(shù)學九年級第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆廣東省汕頭市潮陽區(qū)銅盂中學數(shù)學九年級第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆廣東省汕頭市潮陽區(qū)銅盂中學數(shù)學九年級第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆廣東省汕頭市潮陽區(qū)銅盂中學數(shù)學九年級第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆廣東省汕頭市潮陽區(qū)銅盂中學數(shù)學九年級第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
免費預覽已結束,剩余17頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知三角形的面積一定,則它底邊a上的高h與底邊a之間的函數(shù)關系的圖象大致是()A. B. C. D.2.已知點(﹣4,y1)、(4,y2)都在函數(shù)y=x2﹣4x+5的圖象上,則y1、y2的大小關系為()A.y1<y2 B.y1>y2 C.y1=y(tǒng)2 D.無法確定3.已知關于x的函數(shù)y=k(x+1)和y=﹣(k≠0)它們在同一坐標系中的大致圖象是()A. B.C. D.4.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.平行四邊形 B.菱形 C.等邊三角形 D.等腰直角三角形5.二次函數(shù)y=(x+2)2-3的頂點坐標是()A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)6.關于x的一元二次方程x2+mx﹣1=0的根的情況為()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.不能確定7.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(﹣3,0),其對稱軸為直線x=﹣,結合圖象分析下列結論:①abc>0;②3a+c>0;③當x<0時,y隨x的增大而增大:④若m,n(m<n)為方程a(x+3)(x﹣2)+3=0的兩個根,則m<﹣3且n>2;⑤<0,其中正確的結論有()A.2個 B.3個 C.4個 D.5個8.如圖,E,F(xiàn)分別為矩形ABCD的邊AD,BC的中點,若矩形ABCD與矩形EABF相似,AB=1,則矩形ABCD的面積是()A.4 B.2 C. D.9.四邊形內(nèi)接于⊙,點是的內(nèi)心,,點在的延長線上,則的度數(shù)為()A.56° B.62° C.68° D.48°10.一元二次方程有一根為零,則的值為()A. B. C.或 D.或11.下列一元二次方程,有兩個不相等的實數(shù)根的是()A. B.C. D.12.已知一斜坡的坡比為,坡長為26米,那么坡高為()A.米 B.米 C.13米 D.米二、填空題(每題4分,共24分)13.2018年10月21日,河間市詩經(jīng)國際馬拉松比賽拉開帷幕,電視臺動用無人機航拍技術全程錄像.如圖,是無人機觀測AB兩選手在某水平公路奔跑的情況,觀測選手A處的俯角為,選手B處的俯角為45o.如果此時無人機鏡頭C處的高度CD=20米,則AB兩選手的距離是_______米.14.若某人沿坡度i=3∶4的斜坡前進10m,則他比原來的位置升高了_________m.15.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.16.分解因式:x3y﹣xy3=_____.17.函數(shù)y=—(x-1)2+2圖像上有兩點A(3,y1)、B(—4,y,),則y1______y2(填“<”、“>”或“=”).18.在一個不透明的布袋中裝有4個白球和n個黃球,它們除了顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=__.三、解答題(共78分)19.(8分)(操作發(fā)現(xiàn))如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′;(2)在(1)所畫圖形中,∠AB′B=____.(問題解決)(3)如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.小明同學通過觀察、分析、思考,對上述問題形成了如下想法:想法一:將△APC繞點A按順時針方向旋轉60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系;想法二:將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系.…請參考小明同學的想法,完成該問題的解答過程.(一種方法即可)20.(8分)如圖,△ABC的三個頂點和點O都在正方形網(wǎng)格的格點上,每個小正方形的邊長都為1.(1)將△ABC先向右平移4個單位,再向上平移2個單位得到△A1B1C1,請畫出△A1B1C1;(2)請畫出△A2B2C2,使△A2B2C2和△ABC關于點O成中心對稱.21.(8分)如圖,內(nèi)接于⊙,,高的延長線交⊙于點,,.(1)求⊙的半徑;(2)求的長.22.(10分)某學校游戲節(jié)活動中,設計了一個有獎轉盤游戲,如圖,A轉盤被分成三個面積相等的扇形,B轉盤被分成四個面積相等的扇形,每一個扇形都標有相應的數(shù)字,先轉動A轉盤,記下指針所指區(qū)域內(nèi)的數(shù)字,再轉動B轉盤,記下指針所指區(qū)域內(nèi)的數(shù)字(當指針在邊界線上時,重新轉動轉盤,直到指針指向一個區(qū)域內(nèi)為止)(1)請利用畫樹狀圖或列表的方法(只選其中一種),表示出轉轉盤可能出現(xiàn)的所有結果;(2)如果將兩次轉轉盤指針所指區(qū)域的數(shù)據(jù)相乘,乘積是無理數(shù)時獲得一等獎,那么獲得一等獎的概率是多少?23.(10分)先閱讀,再填空解題:(1)方程:的根是:________,________,則________,________.(2)方程的根是:________,________,則________,________.(3)方程的根是:________,________,則________,________.(4)如果關于的一元二次方程(且、、為常數(shù))的兩根為,,根據(jù)以上(1)(2)(3)你能否猜出:,與系數(shù)、、有什么關系?請寫出來你的猜想并說明理由.24.(10分)有5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.(1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____.(2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.25.(12分)銳角中,,為邊上的高線,,兩動點分別在邊上滑動,且,以為邊向下作正方形(如圖1),設其邊長為.(1)當恰好落在邊上(如圖2)時,求;(2)正方形與公共部分的面積為時,求的值.26.如圖,已知拋物線與y軸交于點,與x軸交于點,點P是線段AB上方拋物線上的一個動點.求這條拋物線的表達式及其頂點坐標;當點P移動到拋物線的什么位置時,使得,求出此時點P的坐標;當點P從A點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標以每秒1個單位長度的速度變動;與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點P,M移動到各自終點時停止當兩個動點移動t秒時,求四邊形PAMB的面積S關于t的函數(shù)表達式,并求t為何值時,S有最大值,最大值是多少?

參考答案一、選擇題(每題4分,共48分)1、D【解析】先寫出三角形底邊a上的高h與底邊a之間的函數(shù)關系,再根據(jù)反比例函數(shù)的圖象特點得出.【詳解】解:已知三角形的面積s一定,

則它底邊a上的高h與底邊a之間的函數(shù)關系為S=ah,即;

該函數(shù)是反比例函數(shù),且2s>0,h>0;

故其圖象只在第一象限.

故選:D.【點睛】本題考查反比例函數(shù)的圖象特點:反比例函數(shù)的圖象是雙曲線,與坐標軸無交點,當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.2、B【分析】首先根據(jù)二次函數(shù)解析式確定拋物線的對稱軸為x=2,再根據(jù)拋物線的增減性以及對稱性可得y1,y2的大小關系.【詳解】解:∵二次函數(shù)y=x2﹣4x+5=(x﹣2)2+1,∴對稱軸為x=2,∵a>0,∴x>2時,y隨x增大而增大,點(﹣4,y1)關于拋物線的對稱軸x=2對稱的點是(8,y1),8>4,∴y1>y2,故選:B.【點睛】本題主要考查的是二次函數(shù)的增減性,從對稱軸分開,二次函數(shù)左右兩邊的增減性不相同結合題意即可解出此題.3、A【分析】先根據(jù)反比例函數(shù)的性質判斷出k的取值,再根據(jù)一次函數(shù)的性質判斷出k取值,二者一致的即為正確答案.【詳解】解:當k>0時,反比例函數(shù)的系數(shù)﹣k<0,反比例函數(shù)過二、四象限,一次函數(shù)過一、二、三象限,原題沒有滿足的圖形;當k<0時,反比例函數(shù)的系數(shù)﹣k>0,所以反比例函數(shù)過一、三象限,一次函數(shù)過二、三、四象限.故選:A.4、B【解析】試題解析:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤,不合題意;B.是軸對稱圖形,也是中心對稱圖形,故此選項正確,符合題意;C.是軸對稱圖形,不是中心對稱圖形,故此選項錯誤,不合題意;D.無法確定是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤,不合題意.故選B.5、C【分析】根據(jù)二次函數(shù)的性質直接求解.【詳解】解:二次函數(shù)y=(x+2)2-3的頂點坐標是(-2,-3).

故選:C.【點睛】本題考查了二次函數(shù)的性質:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;拋物線的頂點式為y=a(x-)2+,對稱軸為直線x=-,頂點坐標為(-,);拋物線與y軸的交點坐標為(0,c).6、A【解析】計算出方程的判別式為△=m2+4,可知其大于0,可判斷出方程根的情況.【詳解】方程x2+mx﹣1=0的判別式為△=m2+4>0,所以該方程有兩個不相等的實數(shù)根,故選:A.【點睛】此題主要考查根的判別式,解題的關鍵是求出方程根的判別式進行判斷.7、C【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),利用二次函數(shù)的性質可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),其對稱軸為直線x,∴拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),且,∴a=b,由圖象知:a<1,c>1,b<1,∴abc>1,故結論①正確;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),∴9a﹣3b+c=1.∵a=b,∴c=﹣6a,∴3a+c=﹣3a>1,故結論②正確;∵當x時,y隨x的增大而增大;當x<1時,y隨x的增大而減小,故結論③錯誤;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),∴y=ax2+bx+c=a(x+3)(x﹣2).∵m,n(m<n)為方程a(x+3)(x﹣2)+3=1的兩個根,∴m,n(m<n)為方程a(x+3)(x﹣2)=﹣3的兩個根,∴m,n(m<n)為函數(shù)y=a(x+3)(x﹣2)與直線y=﹣3的兩個交點的橫坐標,結合圖象得:m<﹣3且n>2,故結論④成立;∵當x時,y1,∴1.故結論⑤正確.故選:C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠1),二次項系數(shù)a決定拋物線的開口方向和大小:當a>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>1),對稱軸在y軸左;當a與b異號時(即ab<1),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(1,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>1時,拋物線與x軸有2個交點;△=b2﹣4ac=1時,拋物線與x軸有1個交點;△=b2﹣4ac<1時,拋物線與x軸沒有交點.8、D【分析】根據(jù)相似多邊形的性質列出比例式,計算即可.【詳解】∵矩形ABCD與矩形EABF相似,∴,即=,解得,AD=,∴矩形ABCD的面積=AB?AD=,故選:D.【點睛】此題主要考查相似多邊形,解題的關鍵是根據(jù)相似的定義列出比例式進行求解.9、C【分析】由點I是的內(nèi)心知,,從而求得,再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.【詳解】∵點I是的內(nèi)心∴,∵∴∵四邊形內(nèi)接于⊙∴故答案為:C.【點睛】本題考查了三角形的內(nèi)心,圓內(nèi)接四邊形的性質,掌握三角形內(nèi)心的性質和圓內(nèi)接四邊形的外角等于內(nèi)對角是解題的關鍵.10、B【分析】把代入一元二次方程,求出的值,然后結合一元二次方程的定義,即可得到答案.【詳解】解:∵一元二次方程有一根為零,∴把代入一元二次方程,則,解得:,∵,∴,∴;故選:B.【點睛】本題考查了一元二次方程的解,以及一元二次方程的定義,解題的關鍵是熟練掌握解一元二次方程的方法,正確求出的值.11、B【分析】分別計算出各選項中方程根的判別式的值,找出大于0的選項即可得答案.【詳解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有兩個相等的實數(shù)根,不符合題意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有兩個不相等的實數(shù)根,符合題意,C.方程可變形為(x+1)2=-1<0,故方程沒有實數(shù)根,不符合題意,D.方程中,△=(-2)2-4×1×3=-8<0,故方程沒有實數(shù)根,不符合題意,故選:B.【點睛】本題考查一元二次方程根的判別式,對于一元二次方程ax2+bx+c=0(a≠0),根的判別式為△=b2-4ac,當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根,當△<0時,方程沒有實數(shù)根.12、C【分析】根據(jù)坡比算出坡角,再根據(jù)坡角算出坡高即可.【詳解】解:設坡角為∵坡度∴.∴.坡高=坡長.故選:C.【點睛】本題考查三角函數(shù)的應用,關鍵在于理解題意,利用三角函數(shù)求出坡角.二、填空題(每題4分,共24分)13、【分析】在兩個直角三角形中,都是知道已知角和對邊,根據(jù)正切函數(shù)求出鄰邊后,相加求和即可;【詳解】由已知可得,,CD=20,∵于點D,∴在中,,,∴,在中,,,∴,∴.故答案為.【點睛】本題主要考查了解直角三角形的應用,準確理解和計算是解題的關鍵.14、1.【詳解】解:如圖:由題意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案為:1【點睛】本題考查解直角三角形的應用-坡度坡角問題.15、2【分析】連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點睛】本題考查切線的性質、等腰三角形的性質、等邊三角形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.16、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再對余下的多項式運用平方差公式繼續(xù)分解.詳解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).點睛:本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式,要首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.17、>【分析】由題意可知二次函數(shù)的解析式,且已知A、B兩點的橫坐標,將兩點橫坐標分別代入二次函數(shù)解析式求出y1、y1的值,再比較大小即可.【詳解】解:把A(3,y1)、B(-4,y1)代入二次函數(shù)y=—(x-1)1+1得,y1=-(3-1)1+1=-1;y1=-(-4-1)1+1=-13,所以y1>y1.故答案為>.【點睛】本題考查二次函數(shù)圖象上點的坐標相關特征,熟練掌握二次函數(shù)圖象上點的坐標符合函數(shù)解析式是解題關鍵.18、1【分析】根據(jù)白球的概率公式列出方程求解即可.【詳解】解:不透明的布袋中的球除顏色不同外,其余均相同,共有(n+4)個球,其中白球4個,根據(jù)概率公式知:P(白球)=,解得:n=1,故答案為:1.【點睛】此題主要考查了概率公式的應用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P.三、解答題(共78分)19、(1)如圖,△AB′C′即為所求;見解析;(1)45°;(3)S△APC=.【解析】(1)如圖所示,△AB′C′即為所求;(1)利用等腰三角形的性質即可解決問題;【問題解決】結論:PA1+PB1=PC1.證法一:將△APC繞點A按順時針方向旋轉60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系;證法二:將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系.【詳解】(1)如圖,△AB′C′即為所求;(1)∵△ABB′是等腰直角三角形,

∴∠AB′B=45°.

故答案為45°;(3)如圖②,∵將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,∴△APP′是等邊三角形,∠AP′C=∠APB=360°﹣90°﹣110°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC∵∠APC=90°,∴AP1+PC1=AC1,即(PC)1+PC1=71,∴PC=,∴AP=,∴S△APC=AP?PC=【點睛】本題考查旋轉的性質、等邊三角形的性質、解直角三角形、勾股定理等知識,解題的關鍵是熟練掌握旋轉的性質,屬于中考??碱}型.20、解:(1)所畫△A1B1C1如圖所示.(2)所畫△A2B2C2如圖所示.【分析】(1)圖形的整體平移就是點的平移,找到圖形中幾個關鍵的點,也就是A,B,C點,依次的依照題目的要求平移得到對應的點,然后連接得到的點從而得到對應的圖形;(2)在已知對稱中心的前提下找到對應的對稱圖形,關鍵還是找點的對稱點,找法是連接點與對稱中心O點并延長相等的距離即為對稱點的位置,最后將對稱點依次連接得到關于O點成中心對稱的圖形?!驹斀狻拷猓海?)所畫△A1B1C1如圖所示.(2)所畫△A2B2C2如圖所示.【點睛】圖形的平移就是點的平移,依次將點進行平移再連接得到的圖形即為平移后得到圖形;一定要區(qū)分中心對稱和軸對稱,中心對稱的對稱中心是一個點,將原圖沿著對稱中心旋轉180°可與原圖重合;軸對稱是關于一條直線對稱,可沿著直線折疊與原圖重合。21、(1)⊙的半徑為;(2)【分析】(1)作直徑,連接,由圓周角定理得,根據(jù)特殊角的三角函數(shù)值,即可求出BF,然后求出半徑;(2)過作于,于,得到四邊形是矩形,利用直角三角形的性質求出DG,由垂徑定理得到AG=EG=ADDG,然后求出DE的長度.【詳解】解:(1)如圖,在⊙中,作直徑,連接,∴,∵,∴,∴⊙的半徑為;(2)如圖,過作于,于∴,四邊形是矩形,∴,∵,∴,∴,∴;【點睛】本題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,矩形的判定和性質,以及直角三角形的性質,解題的關鍵是熟練掌握所學的性質進行解題.22、(1)見解析;(2).【分析】(1)列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;本題用列表法得出所有等可能的情況,進而可得轉轉盤可能出現(xiàn)的所有結果;(2)無理數(shù)是無限不循環(huán)小數(shù),找出乘積為無理數(shù)的情況數(shù),再除以所有等可能出現(xiàn)的結果數(shù),即可求出一等獎的概率.【詳解】(1)由題意列表如下,由列表得知:當A轉盤出現(xiàn)0,1,-1時,B轉盤分別可能有4種等可能情況,所以共有4×3=12種等可能情況.即(0,)、(0,1.5)、(0,-3)、(0,﹣)、(1,)、(1,1.5)、(1,-3)、(1,﹣)、(-1,)、(-1,1.5)、(-1,-3)、(-1,﹣).(2)無理數(shù)是無限不循環(huán)小數(shù),由列表得知:乘積是無理數(shù)的情況有2種,即(1,﹣)、(-1,﹣).乘積分別是﹣,,∴P(乘積為無理數(shù))==.即P(獲得一等獎)=.考點:用列表法或樹狀圖法求隨機事件的概率.23、(1)-2,1,-1,2;(2)3,,,;(3)5,-1,4,-5;(4),,理由見解析【分析】(1)利用十字相乘法求出方程的解,即可得到答案;(2)利用十字相乘法求出方程的解,即可得到答案;(3)利用十字相乘法求出方程的解,即可得到答案;(4)利用公式法求出方程的解,即可得到答案.【詳解】(1)∵,∴(x+2)(x-1)=0,∴,,∴,;故答案為:-2,1,-1,2;(2)∵,∴(x-3)(2x-1)=0,∴,,∴,,故答案為:3,,,;(3)∵,∴(x-5)(x+1)=0,∴,,∴,,故答案為:5,-1,4,-5;(4),與系數(shù)、、的關系是:,,理由是有兩根為,,∴,.【點睛】此題考查解一元二次方程,一元二次方程根與系數(shù)的關系,根據(jù)方程的特點選擇適合的解法是解題的關鍵.24、(1);(2)兩次所抽取的卡片恰好都是軸對稱圖形的概率為.【分析】(1)先判斷其中的中心對稱圖形,再根據(jù)概率公式求解即得答案;(2)先畫出樹狀圖得到所有可能的情況,再判斷兩次都是軸對稱圖形的情況,然后根據(jù)概率公式計算即可.【詳解】解:(1)中心對稱圖形的卡片是A和D,所以從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為,故答案為;(2)軸對稱圖形的卡片是B、C、E.畫樹狀圖如下:由樹狀圖知,共有20種等可能結果,其中兩次所抽取的卡片恰好都是軸對稱圖形的有6種結果,分別是(B,C)、(B,E)、(C,B)、(C,E)、(E,B)、(E,C),∴兩次所抽取的卡片恰好都是軸對稱圖形的概率=.【點睛】本題考查了用畫樹狀圖或列表法求兩次事件的概率、中心對稱圖形和軸對稱圖形的定義等知識,熟知中心對稱圖形和軸對稱圖形的定義以及用畫樹狀圖或列表法求概率的方法是解題的關鍵.25、(1);(2)或1.【解析】(1)根據(jù)已知條件,求出AD的值,再由△AMN∽△ABC,確定比例關系求出x的值即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論