三年 (2020-2022 ) 高考真題匯編 專題07平面解析幾何(選擇題、填空題)_第1頁
三年 (2020-2022 ) 高考真題匯編 專題07平面解析幾何(選擇題、填空題)_第2頁
三年 (2020-2022 ) 高考真題匯編 專題07平面解析幾何(選擇題、填空題)_第3頁
三年 (2020-2022 ) 高考真題匯編 專題07平面解析幾何(選擇題、填空題)_第4頁
三年 (2020-2022 ) 高考真題匯編 專題07平面解析幾何(選擇題、填空題)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題07平面解析幾何(選擇題、填空題)【2022年全國甲卷】1.已知橢圓的離心率為,分別為C的左、右頂點,B為C的上頂點.若,則C的方程為(

)A. B. C. D.【答案】B【解析】【分析】根據(jù)離心率及,解得關(guān)于的等量關(guān)系式,即可得解.【詳解】解:因為離心率,解得,,分別為C的左右頂點,則,B為上頂點,所以.所以,因為所以,將代入,解得,故橢圓的方程為.故選:B.【2022年全國甲卷】2.橢圓的左頂點為A,點P,Q均在C上,且關(guān)于y軸對稱.若直線的斜率之積為,則C的離心率為(

)A. B. C. D.【答案】A【解析】【分析】設(shè),則,根據(jù)斜率公式結(jié)合題意可得,再根據(jù),將用表示,整理,再結(jié)合離心率公式即可得解.【詳解】解法1:設(shè)而不求設(shè),則則由得:,由,得,所以,即,所以橢圓的離心率,故選A.解法2:第三定義設(shè)右端點為B,連接PB,由橢圓的對稱性知:故,由橢圓第三定義得:,故所以橢圓的離心率,故選A.【2022年全國乙卷】3.設(shè)F為拋物線的焦點,點A在C上,點,若,則(

)A.2 B. C.3 D.【答案】B【解析】【分析】根據(jù)拋物線上的點到焦點和準線的距離相等,從而求得點的橫坐標,進而求得點坐標,即可得到答案.【詳解】由題意得,,則,即點到準線的距離為2,所以點的橫坐標為,不妨設(shè)點在軸上方,代入得,,所以.故選:B【2022年全國乙卷】4.雙曲線C的兩個焦點為,以C的實軸為直徑的圓記為D,過作D的切線與C交于M,N兩點,且,則C的離心率為(

)A. B. C. D.【答案】AC【解析】【分析】依題意不妨設(shè)雙曲線焦點在軸,設(shè)過作圓的切線切點為,利用正弦定理結(jié)合三角變換、雙曲線的定義得到或,即可得解,注意就在雙支上還是在單支上分類討論.【詳解】方法一(幾何法,雙曲線定義的應(yīng)用)情況一M、N在雙曲線的同一支,依題意不妨設(shè)雙曲線焦點在軸,設(shè)過作圓的切線切點為B,所以,因為,所以在雙曲線的左支,,,,設(shè),由即,則,選A情況二若M、N在雙曲線的兩支,因為,所以在雙曲線的右支,所以,,,設(shè),由,即,則,所以,即,所以雙曲線的離心率選C方法二(答案回代法)特值雙曲線,過且與圓相切的一條直線為,兩交點都在左支,,,則,特值雙曲線,過且與圓相切的一條直線為,兩交點在左右兩支,在右支,,,則,解法三:依題意不妨設(shè)雙曲線焦點在軸,設(shè)過作圓的切線切點為,若分別在左右支,因為,且,所以在雙曲線的右支,又,,,設(shè),,在中,有,故即,所以,而,,,故,代入整理得到,即,所以雙曲線的離心率若均在左支上,同理有,其中為鈍角,故,故即,代入,,,整理得到:,故,故,故選:AC.【2021年甲卷文科】5.點到雙曲線的一條漸近線的距離為(

)A. B. C. D.【答案】A【解析】【分析】首先確定漸近線方程,然后利用點到直線距離公式求得點到一條漸近線的距離即可.【詳解】由題意可知,雙曲線的漸近線方程為:,即,結(jié)合對稱性,不妨考慮點到直線的距離:.故選:A.【2021年乙卷文科】6.設(shè)B是橢圓的上頂點,點P在C上,則的最大值為(

)A. B. C. D.2【答案】A【解析】【分析】設(shè)點,由依題意可知,,,再根據(jù)兩點間的距離公式得到,然后消元,即可利用二次函數(shù)的性質(zhì)求出最大值.【詳解】設(shè)點,因為,,所以,而,所以當時,的最大值為.故選:A.【點睛】本題解題關(guān)鍵是熟悉橢圓的簡單幾何性質(zhì),由兩點間的距離公式,并利用消元思想以及二次函數(shù)的性質(zhì)即可解出.易錯點是容易誤認為短軸的相對端點是橢圓上到上定點B最遠的點,或者認為是橢圓的長軸的端點到短軸的端點距離最大,這些認識是錯誤的,要注意將距離的平方表示為二次函數(shù)后,自變量的取值范圍是一個閉區(qū)間,而不是全體實數(shù)上求最值..【2021年乙卷理科】7.設(shè)是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是(

)A. B. C. D.【答案】C【解析】【分析】設(shè),由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可.【詳解】設(shè),由,因為,,所以,因為,當,即時,,即,符合題意,由可得,即;當,即時,,即,化簡得,,顯然該不等式不成立.故選:C.【點睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值.【2021年新高考1卷】8.已知,是橢圓:的兩個焦點,點在上,則的最大值為(

)A.13 B.12 C.9 D.6【答案】C【解析】【分析】本題通過利用橢圓定義得到,借助基本不等式即可得到答案.【詳解】由題,,則,所以(當且僅當時,等號成立).故選:C.【點睛】【2021年新高考2卷】9.拋物線的焦點到直線的距離為,則(

)A.1 B.2 C. D.4【答案】B【解析】【分析】首先確定拋物線的焦點坐標,然后結(jié)合點到直線距離公式可得的值.【詳解】拋物線的焦點坐標為,其到直線的距離:,解得:(舍去).故選:B.【2020年新課標1卷理科】10.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=(

)A.2 B.3 C.6 D.9【答案】C【解析】【分析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.【2020年新課標1卷理科】11.已知⊙M:,直線:,為上的動點,過點作⊙M的切線,切點為,當最小時,直線的方程為(

)A. B. C. D.【答案】D【解析】【分析】由題意可判斷直線與圓相離,根據(jù)圓的知識可知,四點共圓,且,根據(jù)可知,當直線時,最小,求出以為直徑的圓的方程,根據(jù)圓系的知識即可求出直線的方程.【詳解】圓的方程可化為,點到直線的距離為,所以直線與圓相離.依圓的知識可知,四點四點共圓,且,所以,而,當直線時,,,此時最?。嗉矗山獾?,.所以以為直徑的圓的方程為,即,兩圓的方程相減可得:,即為直線的方程.故選:D.【點睛】本題主要考查直線與圓,圓與圓的位置關(guān)系的應(yīng)用,以及圓的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力,屬于中檔題.【2020年新課標1卷文科】12.已知圓,過點(1,2)的直線被該圓所截得的弦的長度的最小值為(

)A.1 B.2C.3 D.4【答案】B【解析】【分析】當直線和圓心與點的連線垂直時,所求的弦長最短,即可得出結(jié)論.【詳解】圓化為,所以圓心坐標為,半徑為,設(shè),當過點的直線和直線垂直時,圓心到過點的直線的距離最大,所求的弦長最短,此時根據(jù)弦長公式得最小值為.故選:B.【點睛】本題考查圓的簡單幾何性質(zhì),以及幾何法求弦長,屬于基礎(chǔ)題.【2020年新課標1卷文科】13.設(shè)是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為(

)A. B.3 C. D.2【答案】B【解析】【分析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計算即可.【詳解】由已知,不妨設(shè),則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題.【2020年新課標2卷理科】14.若過點(2,1)的圓與兩坐標軸都相切,則圓心到直線的距離為(

)A. B. C. D.【答案】B【解析】【分析】由題意可知圓心在第一象限,設(shè)圓心的坐標為,可得圓的半徑為,寫出圓的標準方程,利用點在圓上,求得實數(shù)的值,利用點到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點在第一象限,若圓心不在第一象限,則圓與至少與一條坐標軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標為,則圓的半徑為,圓的標準方程為.由題意可得,可得,解得或,所以圓心的坐標為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點睛】本題考查圓心到直線距離的計算,求出圓的方程是解題的關(guān)鍵,考查計算能力,屬于中等題.【2020年新課標2卷理科】15.設(shè)為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為(

)A.4 B.8 C.16 D.32【答案】B【解析】【分析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當且僅當取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.【2020年新課標3卷理科】16.設(shè)為坐標原點,直線與拋物線C:交于,兩點,若,則的焦點坐標為(

)A. B. C. D.【答案】B【解析】【分析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點的坐標,代入方程求得的值,進而求得其焦點坐標,得到結(jié)果.【詳解】因為直線與拋物線交于兩點,且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點坐標為,故選:B.【點睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識點有直線與拋物線的交點,拋物線的對稱性,點在拋物線上的條件,拋物線的焦點坐標,屬于簡單題目.【2020年新課標3卷理科】17.設(shè)雙曲線C:(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.P是C上一點,且F1P⊥F2P.若△PF1F2的面積為4,則a=(

)A.1 B.2 C.4 D.8【答案】A【解析】【分析】根據(jù)雙曲線的定義,三角形面積公式,勾股定理,結(jié)合離心率公式,即可得出答案.【詳解】,,根據(jù)雙曲線的定義可得,,即,,,,即,解得,故選:A.【點睛】本題主要考查了雙曲線的性質(zhì)以及定義的應(yīng)用,涉及了勾股定理,三角形面積公式的應(yīng)用,屬于中檔題.【2020年新課標3卷文科】18.在平面內(nèi),A,B是兩個定點,C是動點,若,則點C的軌跡為(

)A.圓 B.橢圓 C.拋物線 D.直線【答案】A【解析】【分析】首先建立平面直角坐標系,然后結(jié)合數(shù)量積的定義求解其軌跡方程即可.【詳解】設(shè),以AB中點為坐標原點建立如圖所示的平面直角坐標系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數(shù)量積的坐標運算,軌跡方程的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.【2020年新課標3卷文科】19.點(0,﹣1)到直線距離的最大值為(

)A.1 B. C. D.2【答案】B【解析】【分析】首先根據(jù)直線方程判斷出直線過定點,設(shè),當直線與垂直時,點到直線距離最大,即可求得結(jié)果.【詳解】由可知直線過定點,設(shè),當直線與垂直時,點到直線距離最大,即為.故選:B.【點睛】該題考查的是有關(guān)解析幾何初步的問題,涉及到的知識點有直線過定點問題,利用幾何性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.【2022年新高考1卷】20.已知O為坐標原點,點在拋物線上,過點的直線交C于P,Q兩點,則(

)A.C的準線為 B.直線AB與C相切C. D.【答案】BCD【解析】【分析】求出拋物線方程可判斷A,聯(lián)立AB與拋物線的方程求交點可判斷B,利用距離公式及弦長公式可判斷C、D.【詳解】將點的代入拋物線方程得,所以拋物線方程為,故準線方程為,A錯誤;,所以直線的方程為,聯(lián)立,可得,解得,故B正確;設(shè)過的直線為,若直線與軸重合,則直線與拋物線只有一個交點,所以,直線的斜率存在,設(shè)其方程為,,聯(lián)立,得,所以,所以或,,又,,所以,故C正確;因為,,所以,而,故D正確.故選:BCD【2022年新高考2卷】21.已知O為坐標原點,過拋物線焦點F的直線與C交于A,B兩點,其中A在第一象限,點,若,則(

)A.直線的斜率為 B.C. D.【答案】ACD【解析】【分析】由及拋物線方程求得,再由斜率公式即可判斷A選項;表示出直線的方程,聯(lián)立拋物線求得,即可求出判斷B選項;由拋物線的定義求出即可判斷C選項;由,求得,為鈍角即可判斷D選項.【詳解】對于A,易得,由可得點在的垂直平分線上,則點橫坐標為,代入拋物線可得,則,則直線的斜率為,A正確;對于B,由斜率為可得直線的方程為,聯(lián)立拋物線方程得,設(shè),則,則,代入拋物線得,解得,則,則,B錯誤;對于C,由拋物線定義知:,C正確;對于D,,則為鈍角,又,則為鈍角,又,則,D正確.故選:ACD.【2021年新高考1卷】22.已知點在圓上,點、,則(

)A.點到直線的距離小于B.點到直線的距離大于C.當最小時,D.當最大時,【答案】ACD【解析】【分析】計算出圓心到直線的距離,可得出點到直線的距離的取值范圍,可判斷AB選項的正誤;分析可知,當最大或最小時,與圓相切,利用勾股定理可判斷CD選項的正誤.【詳解】圓的圓心為,半徑為,直線的方程為,即,圓心到直線的距離為,所以,點到直線的距離的最小值為,最大值為,A選項正確,B選項錯誤;如下圖所示:當最大或最小時,與圓相切,連接、,可知,,,由勾股定理可得,CD選項正確.故選:ACD.【點睛】結(jié)論點睛:若直線與半徑為的圓相離,圓心到直線的距離為,則圓上一點到直線的距離的取值范圍是.【2021年新高考2卷】23.已知直線與圓,點,則下列說法正確的是(

)A.若點A在圓C上,則直線l與圓C相切 B.若點A在圓C內(nèi),則直線l與圓C相離C.若點A在圓C外,則直線l與圓C相離 D.若點A在直線l上,則直線l與圓C相切【答案】ABD【解析】【分析】轉(zhuǎn)化點與圓、點與直線的位置關(guān)系為的大小關(guān)系,結(jié)合點到直線的距離及直線與圓的位置關(guān)系即可得解.【詳解】圓心到直線l的距離,若點在圓C上,則,所以,則直線l與圓C相切,故A正確;若點在圓C內(nèi),則,所以,則直線l與圓C相離,故B正確;若點在圓C外,則,所以,則直線l與圓C相交,故C錯誤;若點在直線l上,則即,所以,直線l與圓C相切,故D正確.故選:ABD.【2020年新高考1卷(山東卷)】24.已知曲線.(

)A.若m>n>0,則C是橢圓,其焦點在y軸上B.若m=n>0,則C是圓,其半徑為C.若mn<0,則C是雙曲線,其漸近線方程為D.若m=0,n>0,則C是兩條直線【答案】ACD【解析】【分析】結(jié)合選項進行逐項分析求解,時表示橢圓,時表示圓,時表示雙曲線,時表示兩條直線.【詳解】對于A,若,則可化為,因為,所以,即曲線表示焦點在軸上的橢圓,故A正確;對于B,若,則可化為,此時曲線表示圓心在原點,半徑為的圓,故B不正確;對于C,若,則可化為,此時曲線表示雙曲線,由可得,故C正確;對于D,若,則可化為,,此時曲線表示平行于軸的兩條直線,故D正確;故選:ACD.【點睛】本題主要考查曲線方程的特征,熟知常見曲線方程之間的區(qū)別是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).【2022年全國甲卷】25.設(shè)點M在直線上,點和均在上,則的方程為______________.【答案】【解析】【分析】設(shè)出點M的坐標,利用和均在上,求得圓心及半徑,即可得圓的方程.【詳解】方法一:(三點共圓)∵點M在直線上,∴設(shè)點M為,又因為點和均在上,∴點M到兩點的距離相等且為半徑R,∴,,解得,∴,,的方程為.故答案為:方法二:(圓的幾何性質(zhì))由題可知,M是以(3,0)和(0,1)為端點的線段垂直平分線y=3x-4與直線的交點(1,-1).,的方程為.故答案為:【2022年全國甲卷】26.記雙曲線的離心率為e,寫出滿足條件“直線與C無公共點”的e的一個值______________.【答案】2(滿足皆可)【解析】【分析】根據(jù)題干信息,只需雙曲線漸近線中即可求得滿足要求的e值.【詳解】解:,所以C的漸近線方程為,結(jié)合漸近線的特點,只需,即,可滿足條件“直線與C無公共點”所以,又因為,所以,故答案為:2(滿足皆可)【2022年全國甲卷】27.若雙曲線的漸近線與圓相切,則_________.【答案】【解析】【分析】首先求出雙曲線的漸近線方程,再將圓的方程化為標準式,即可得到圓心坐標與半徑,依題意圓心到直線的距離等于圓的半徑,即可得到方程,解得即可.【詳解】解:雙曲線的漸近線為,即,不妨取,圓,即,所以圓心為,半徑,依題意圓心到漸近線的距離,解得或(舍去).故答案為:.【2022年全國乙卷】28.過四點中的三點的一個圓的方程為____________.【答案】或或或.【解析】【分析】法一:設(shè)圓的方程為,根據(jù)所選點的坐標,得到方程組,解得即可;【詳解】[法一]:圓的一般方程依題意設(shè)圓的方程為,(1)若過,,,則,解得,所以圓的方程為,即;(2)若過,,,則,解得,所以圓的方程為,即;(3)若過,,,則,解得,所以圓的方程為,即;(4)若過,,,則,解得,所以圓的方程為,即;故答案為:或或或.[法二]:【最優(yōu)解】圓的標準方程(三點中的兩條中垂線的交點為圓心)設(shè)(1)若圓過三點,圓心在直線,設(shè)圓心坐標為,則,所以圓的方程為;(2)若圓過三點,設(shè)圓心坐標為,則,所以圓的方程為;(3)若圓過三點,則線段的中垂線方程為,線段的中垂線方程為,聯(lián)立得,所以圓的方程為;(4)若圓過三點,則線段的中垂線方程為,線段中垂線方程為,聯(lián)立得,所以圓的方程為.故答案為:或或或.【整體點評】法一;利用圓過三個點,設(shè)圓的一般方程,解三元一次方程組,思想簡單,運算稍繁;法二;利用圓的幾何性質(zhì),先求出圓心再求半徑,運算稍簡潔,是該題的最優(yōu)解.【2022年新高考1卷】29.寫出與圓和都相切的一條直線的方程________________.【答案】或或【解析】【分析】先判斷兩圓位置關(guān)系,分情況討論即可.【詳解】解:方法一:顯然直線的斜率不為0,不妨設(shè)直線方程為,于是,故①,于是或,再結(jié)合①解得或或,所以直線方程有三條,分別為,,填一條即可方法二:設(shè)圓的圓心,半徑為,圓的圓心,半徑,則,因此兩圓外切,由圖像可知,共有三條直線符合條件,顯然符合題意;又由方程和相減可得方程,即為過兩圓公共切點的切線方程,又易知兩圓圓心所在直線OC的方程為,直線OC與直線的交點為,設(shè)過該點的直線為,則,解得,從而該切線的方程為填一條即可方法三:圓的圓心為,半徑為,圓的圓心為,半徑為,兩圓圓心距為,等于兩圓半徑之和,故兩圓外切,如圖,當切線為l時,因為,所以,設(shè)方程為O到l的距離,解得,所以l的方程為,當切線為m時,設(shè)直線方程為,其中,,由題意,解得,當切線為n時,易知切線方程為,故答案為:或或.【2022年新高考1卷】30.已知橢圓,C的上頂點為A,兩個焦點為,,離心率為.過且垂直于的直線與C交于D,E兩點,,則的周長是________________.【答案】13【解析】【分析】利用離心率得到橢圓的方程為,根據(jù)離心率得到直線的斜率,進而利用直線的垂直關(guān)系得到直線的斜率,寫出直線的方程:,代入橢圓方程,整理化簡得到:,利用弦長公式求得,得,根據(jù)對稱性將的周長轉(zhuǎn)化為的周長,利用橢圓的定義得到周長為.【詳解】∵橢圓的離心率為,∴,∴,∴橢圓的方程為,不妨設(shè)左焦點為,右焦點為,如圖所示,∵,∴,∴為正三角形,∵過且垂直于的直線與C交于D,E兩點,為線段的垂直平分線,∴直線的斜率為,斜率倒數(shù)為,直線的方程:,代入橢圓方程,整理化簡得到:,判別式,∴,∴,得,∵為線段的垂直平分線,根據(jù)對稱性,,∴的周長等于的周長,利用橢圓的定義得到周長為.故答案為:13.【2022年新高考2卷】31.設(shè)點,若直線關(guān)于對稱的直線與圓有公共點,則a的取值范圍是________.【答案】【解析】【分析】首先求出點關(guān)于對稱點的坐標,即可得到直線的方程,根據(jù)圓心到直線的距離小于等于半徑得到不等式,解得即可;【詳解】解:關(guān)于對稱的點的坐標為,在直線上,所以所在直線即為直線,所以直線為,即;圓,圓心,半徑,依題意圓心到直線的距離,即,解得,即;故答案為:【2022年新高考2卷】32.已知直線l與橢圓在第一象限交于A,B兩點,l與x軸,y軸分別交于M,N兩點,且,則l的方程為___________.【答案】【解析】【分析】令的中點為,設(shè),,利用點差法得到,設(shè)直線,,,求出、的坐標,再根據(jù)求出、,即可得解;【詳解】解法一:(弦中點問題:點差法)令的中點為,設(shè),,利用點差法得到,設(shè)直線,,,求出、的坐標,再根據(jù)求出、,即可得解;解:令的中點為,因為,所以,設(shè),,則,,所以,即所以,即,設(shè)直線,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直線,即;故答案為:解法二:(直線與圓錐曲線相交的常規(guī)方法)解:由題意知,點既為線段的中點又是線段MN的中點,設(shè),,設(shè)直線,,,則,,,因為,所以聯(lián)立直線AB與橢圓方程得消掉y得其中,∴AB中點E的橫坐標,又,∴∵,,∴,又,解得m=2所以直線,即解法三:令的中點為,因為,所以,設(shè),,則,,所以,即所以,即,設(shè)直線,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直線,即;故答案為:【2021年甲卷文科】33.已知為橢圓C:的兩個焦點,P,Q為C上關(guān)于坐標原點對稱的兩點,且,則四邊形的面積為________.【答案】【解析】【分析】根據(jù)已知可得,設(shè),利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【詳解】因為為上關(guān)于坐標原點對稱的兩點,且,所以四邊形為矩形,設(shè),則,所以,,即四邊形面積等于.故答案為:.【2021年乙卷文科】34.雙曲線的右焦點到直線的距離為________.【答案】【解析】【分析】先求出右焦點坐標,再利用點到直線的距離公式求解.【詳解】由已知,,所以雙曲線的右焦點為,所以右焦點到直線的距離為.故答案為:【2021年乙卷理科】35.已知雙曲線的一條漸近線為,則C的焦距為_________.【答案】4【解析】【分析】將漸近線方程化成斜截式,得出的關(guān)系,再結(jié)合雙曲線中對應(yīng)關(guān)系,聯(lián)立求解,再由關(guān)系式求得,即可求解.【詳解】由漸近線方程化簡得,即,同時平方得,又雙曲線中,故,解得(舍去),,故焦距.故答案為:4.【點睛】本題為基礎(chǔ)題,考查由漸近線求解雙曲線中參數(shù),焦距,正確計算并聯(lián)立關(guān)系式求解是關(guān)鍵.【2021年新高考1卷】36.已知為坐標原點,拋物線:()的焦點為,為上一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論