2023屆上海市青浦區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2023屆上海市青浦區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2023屆上海市青浦區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2023屆上海市青浦區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2023屆上海市青浦區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.關(guān)于拋物線y=x2+6x﹣8,下列選項結(jié)論正確的是()A.開口向下 B.拋物線過點(0,8)C.拋物線與x軸有兩個交點 D.對稱軸是直線x=32.下列反比例函數(shù)圖象一定在第一、三象限的是()A. B. C. D.3.已知x=1是方程x2+px+1=0的一個實數(shù)根,則p的值是()A.0 B.1 C.2 D.﹣24.將拋物線y=x2﹣2向右平移3個單位長度,再向上平移2個單位長度,則所得拋物線的解析式為()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+15.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則k的值為()A.0.5 B.1 C.2 D.46.如圖,在下列四個幾何體中,從正面、左面、上面看不完全相同的是A. B. C. D.7.如圖所示的幾何體的俯視圖是()A. B. C. D.8.已知反比例函數(shù)y=kx的圖象經(jīng)過點P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)9.已知如圖:為估計池塘的寬度,在池塘的一側(cè)取一點,再分別取、的中點、,測得的長度為米,則池塘的寬的長為()A.米 B.米 C.米 D.米10.如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)膶嶒灲Y(jié)果.隨著試驗次數(shù)的增加,“釘尖向上”的頻率總在某個數(shù)字附近,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.100011.下列二次函數(shù)中有一個函數(shù)的圖像與x軸有兩個不同的交點,這個函數(shù)是()A. B. C. D.12.如圖,已知正五邊形內(nèi)接于,連結(jié)相交于點,則的度數(shù)是()A. B. C. D.二、填空題(每題4分,共24分)13.在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過點,,則的值是__________.14.若有一組數(shù)據(jù)為8、4、5、2、1,則這組數(shù)據(jù)的中位數(shù)為__________.15.一元二次方程的兩根之積是_________.16.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°17.若=,則的值為________.18.在一個不透明的袋子中裝有除顏色外其余均相同的7個小球,其中紅球2個,黑球5個,若再放入m個一樣的黑球并搖勻,此時,隨機摸出一個球是黑球的概率等于,則m的值為.三、解答題(共78分)19.(8分)經(jīng)過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.(1)用畫樹狀圖法或列表法分析這兩輛汽車行駛方向所有可能的結(jié)果;(2)求一輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)的概率;(3)求至少有一輛車直行的概率.20.(8分)如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,2),B(n,4)兩點,連接OA、OB.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求△AOB的面積;(3)在直角坐標(biāo)系中,是否存在一點P,使以P、A、O、B為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.21.(8分)解方程:2(x-3)2=x2-1.22.(10分)網(wǎng)絡(luò)比網(wǎng)絡(luò)的傳輸速度快10倍以上,因此人們對產(chǎn)品充滿期待.華為集團計劃2020年元月開始銷售一款產(chǎn)品.根據(jù)市場營銷部的規(guī)劃,該產(chǎn)品的銷售價格將隨銷售月份的變化而變化.若該產(chǎn)品第個月(為正整數(shù))銷售價格為元/臺,與滿足如圖所示的一次函數(shù)關(guān)系:且第個月的銷售數(shù)量(萬臺)與的關(guān)系為.(1)該產(chǎn)品第6個月每臺銷售價格為______元;(2)求該產(chǎn)品第幾個月的銷售額最大?該月的銷售價格是多少元/臺?(3)若華為董事會要求銷售該產(chǎn)品的月銷售額不低于27500萬元,則預(yù)計銷售部符合銷售要求的是哪幾個月?(4)若每銷售1萬臺該產(chǎn)品需要在銷售額中扣除元推廣費用,當(dāng)時銷售利潤最大值為22500萬元時,求的值.23.(10分)平面直角坐標(biāo)系中有兩點、,我們定義、兩點間的“值”直角距離為,且滿足,其中.小靜和佳佳在解決問題:(求點與點的“1值”直角距離)時,采用了兩種不同的方法:(方法一):;(方法二):如圖1,過點作軸于點,過點作直線與軸交于點,則請你參照以上兩種方法,解決下列問題:(1)已知點,點,則、兩點間的“2值”直角距離.(2)函數(shù)的圖像如圖2所示,點為其圖像上一動點,滿足兩點間的“值”直角距離,且符合條件的點有且僅有一個,求出符合條件的“值”和點坐標(biāo).(3)城市的許多街道是相互垂直或平行的,因此,往往不能沿直線行走到達(dá)目的地,只能按直角拐彎的方式行走,因此,兩地之間修建垂直和平行的街道常常轉(zhuǎn)化為兩點間的“值”直角距離,地位于地的正東方向上,地在點東北方向上且相距,以為圓心修建了一個半徑為的圓形濕地公園,現(xiàn)在要在公園和地之間修建觀光步道.步道只能東西或者南北走向,并且東西方向每千米成本是20萬元,南北方向每千米的成本是10萬元,問:修建這一規(guī)光步道至少要多少萬元?24.(10分)某校八年級學(xué)生在一起射擊訓(xùn)練中,隨機抽取10名學(xué)生的成績?nèi)缦卤?,回答問題:環(huán)數(shù)6789人數(shù)152(1)填空:_______;(2)10名學(xué)生的射擊成績的眾數(shù)是_______環(huán),中位數(shù)是_______環(huán);(3)若9環(huán)(含9環(huán))以上評為優(yōu)秀射手,試估計全年級500名學(xué)生中有_______名是優(yōu)秀射手.25.(12分)某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價不低于成本,且不高于70元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:售價x(元/千克)405060銷售量y(千克)1008060(1)求y與x之間的函數(shù)表達(dá)式;(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入?成本);(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?26.解方程(1)(2)

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)△的符號,可判斷圖像與x軸的交點情況,根據(jù)二次項系數(shù)可判斷開口方向,令函數(shù)式中x=0,可求圖像與y軸的交點坐標(biāo),利用配方法可求圖像的頂點坐標(biāo).【詳解】解:A、拋物線y=x2+6x﹣8中a=1>0,則拋物線開口方向向上,故本選項不符合題意.B、x=0時,y=﹣8,拋物線與y軸交點坐標(biāo)為(0,﹣8),故本選項不符合題意.C、△=62﹣4×1×(-8)>0,拋物線與x軸有兩個交點,本選項符合題意.D、拋物線y=x2+6x﹣8=(x+3)2﹣17,則該拋物線的對稱軸是直線x=﹣3,故本選項不符合題意.故選:C.【點睛】本題主要考查的是二次函數(shù)的開口,與y軸x軸的交點,對稱軸等基本性質(zhì),掌握二次函數(shù)的基本性質(zhì)是解題的關(guān)鍵.2、A【分析】根據(jù)反比例函數(shù)的性質(zhì),函數(shù)若位于一、三象限,則反比例函數(shù)系數(shù)k>0,對各選項逐一判斷即可.【詳解】解:A、∵m2+1>0,∴反比例函數(shù)圖象一定在一、三象限;B、不確定;

C、不確定;

D、不確定.

故選:A.【點睛】本題考查了反比例函數(shù)的性質(zhì),理解反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.3、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【詳解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故選D.【點睛】本題考查了一元二次方程的解得定義,能使一元二次方程成立的未知數(shù)的值叫作一元二次方程的解,熟練掌握一元二次方程解得定義是解答本題的關(guān)鍵.4、B【分析】利用二次函數(shù)圖象的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】將拋物線y=x2﹣2向右平移3個單位長度,得到平移后解析式為:y=(x﹣3)2﹣2,∴再向上平移2個單位長度所得的拋物線解析式為:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故選:B.【點睛】考核知識點:二次函數(shù)圖象.理解性質(zhì)是關(guān)鍵.5、C【解析】將(1,1)代入解析式中即可.【詳解】解:將點(1,1)代入解析式得,,k=1.故選:C.【點睛】此題考查的是求反比例系數(shù)解析式,掌握用待定系數(shù)法求反比例函數(shù)解析式是解決此題的關(guān)鍵.6、B【解析】根據(jù)常見幾何體的三視圖解答即可得.【詳解】球的三視圖均為圓,故不符合題意;正方體的三視圖均為正方形,故不符合題意;圓柱體的主視圖與左視圖為長方形,俯視圖為圓,故符合題意;圓錐的主視圖與左視圖為等腰三角形,俯視圖為圓,故符合題意,故選B.【點睛】本題考查了簡單幾何體的三視圖,解題的關(guān)鍵是熟練掌握三視圖的定義和常見幾何體的三視圖.7、D【解析】試題分析:根據(jù)俯視圖的作法即可得出結(jié)論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.8、C【解析】先根據(jù)點(-2,3),在反比例函數(shù)y=k的圖象上求出k的值,再根據(jù)k=xy的特點對各選項進行逐一判斷.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此點不在反比例函數(shù)圖象上;B.∵1×6=6≠-6,∴此點不在反比例函數(shù)圖象上;C.∵3×(-2)=-6,∴此點在反比例函數(shù)圖象上;D.∵3×2=6≠-6,∴此點不在反比例函數(shù)圖象上。故答案選:C.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標(biāo)特點,解題的關(guān)鍵是熟練的掌握反比例函數(shù)圖像上點的坐標(biāo)特點.9、C【分析】根據(jù)三角形中位線定理可得DE=BC,代入數(shù)據(jù)可得答案.【詳解】解:∵線段AB,AC的中點為D,E,

∴DE=BC,

∵DE=20米,

∴BC=40米,

故選:C.【點睛】此題主要考查了三角形中位線定理,關(guān)鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.10、B【解析】結(jié)合給出的圖形以及在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,解答即可.【詳解】由圖象可知隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.1附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.1.故選B.【點睛】考查利用頻率估計概率.大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.11、D【解析】試題分析:分別對A、B、C、D四個選項進行一一驗證,令y=1,轉(zhuǎn)化為一元二次方程,根據(jù)根的判別式來判斷方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,則函數(shù)圖形與x軸沒有兩個交點,故A錯誤;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,則函數(shù)圖形與x軸沒有兩個交點,故B錯誤;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,則函數(shù)圖形與x軸沒有兩個交點,故C錯誤;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,則函數(shù)圖形與x軸有兩個交點,故D正確;故選D.考點:本題考查的是拋物線與x軸的交點點評:解答本題的關(guān)鍵是熟練掌握當(dāng)二次函數(shù)與x軸有兩個交點時,b2-4ac>1,與x軸有一個交點時,b2-4ac=1,與x軸沒有交點時,b2-4ac<1.12、C【分析】連接OA、OB、OC、OD、OE,如圖,則由正多邊形的性質(zhì)易求得∠COD和∠BOE的度數(shù),然后根據(jù)圓周角定理可得∠DBC和∠BCF的度數(shù),再根據(jù)三角形的內(nèi)角和定理求解即可.【詳解】解:連接OA、OB、OC、OD、OE,如圖,則∠COD=∠AOB=∠AOE=,∴∠BOE=144°,∴,,∴.故選:C.【點睛】本題考查了正多邊形和圓、圓周角定理和三角形的內(nèi)角和定理,屬于基本題型,熟練掌握基本知識是解題關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】將點B的坐標(biāo)代入反比例函數(shù)求出k,再將點A的坐標(biāo)代入計算即可;【詳解】(1)將代入得,k==-6,所以,反比例函數(shù)解析式為,將點的坐標(biāo)代入得所以m=,故填:.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知待定系數(shù)法求解析式.14、4【分析】根據(jù)中位數(shù)的定義求解即可.【詳解】解:將數(shù)據(jù)8、4、5、2、1按從小到大的順序排列為:1、2、4、5、8,所以這組數(shù)據(jù)的中位數(shù)為4.故答案為:4.【點睛】本題考查了中位數(shù)的定義,屬于基本題型,解題的關(guān)鍵是熟知中位數(shù)的概念.15、【分析】根據(jù)一元二次方程兩根之積與系數(shù)的關(guān)系可知.【詳解】解:根據(jù)題意有兩根之積x1x2==-1.

故一元二次方程-x2+3x+1=0的兩根之積是-1.

故答案為:-1.【點睛】本題重點考查了一元二次方程根與系數(shù)的關(guān)系,是基本題型.兩根之積x1x2=.16、B.【解析】試題分析:根據(jù)AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質(zhì)、切線的性質(zhì).17、【分析】根據(jù)條件可知a與b的數(shù)量關(guān)系,然后代入原式即可求出答案.【詳解】∵=,∴b=a,∴=,故答案為:.【點睛】本題考查了分式,解題的關(guān)鍵是熟練運用分式的運算法則.18、1.【解析】試題分析:根據(jù)題意得:=,解得:m=1.故答案為1.考點:概率公式.三、解答題(共78分)19、(1)見解析;(2)(一輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)).(3)(至少有一輛汽車直行).【分析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)根據(jù)(1)中所畫的樹狀圖,即可求出答案;(3)根據(jù)(1)中所畫的樹狀圖,即可求出答案.【詳解】解:(1)如圖:可以看出所有可能出現(xiàn)的結(jié)果共9種,即:直左,直直,直右,左左,左直,左右,右直,右左,右右.它們出現(xiàn)的可能性相等.(2)一輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)的結(jié)果有2種,即:左右,右左.∴P(一輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)).(3)至少有一輛汽車直行的結(jié)果有5種,即:左直,直左,直直,直右,右直.∴P(至少有一輛汽車直行).【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)一次函數(shù)的解析式為,反比例函數(shù)的解析式為;(2)的面積為;(3)存在,點的坐標(biāo)為(-3,-6),(1,-2)(3,6).【分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征可求出k2和n的值,可得反比例函數(shù)解析式,再利用待定系數(shù)法即可求出一次函數(shù)的解析式;(2)設(shè)一次函數(shù)與軸交于點,過點、分別向軸作垂線,垂足為點、,令x=0,可求出點C的坐標(biāo),根據(jù)即可得答案;(3)分OA、OB、AB為對角線三種情況,根據(jù)A、B坐標(biāo)可得直線OA、OB的解析式,根據(jù)互相平行的兩條直線斜率相同可知直線OP、AP、BP的斜率,利用待定系數(shù)法可求出其解析式,進而聯(lián)立解析式求出交點坐標(biāo)即可得答案.【詳解】(1)∵點,在反比例函數(shù)上,∴,,∴,,∴,,∵點,在一次函數(shù)上,∴,,∴,,∴,∴一次函數(shù)的解析式為,反比例函數(shù)的解析式為.(2)如圖,設(shè)一次函數(shù)與y軸交于點,過點、分別向軸作垂線,垂足為點、,∵當(dāng)時,,∴點的坐標(biāo)為,∵,,∴,,∴,即的面積為.(3)∵點A(2,2),B(-1,-4),∴直線OA的解析式為y=x,直線OB的解析式為y=4x,直線AB的解析式為y=2x-2,①如圖,當(dāng)OA//PB,OP//AB時,∴直線OP的解析式為y=2x+b1,設(shè)直線PB的解析式為y=x+b1,∵點B(-1,-4)在直線上,∴-4=-1+b1,解得:b1=-3,∴直線PB的解析式為y=x-3,聯(lián)立直線OP、BP解析式得:,解得:,∴點P坐標(biāo)為(-3,-6),②如圖,當(dāng)OB//AP,OA//BP時,同①可得BP解析式為y=x-3,設(shè)AP的解析式為y=4x+b2,∵點A(2,2)在直線AP上,∴2=2×4+b2,解得:b2=-6,∴直線AP的解析式為y=4x-6,聯(lián)立PB和AP解析式得:,解得:,∴點P坐標(biāo)為(1,-2),③如圖,當(dāng)OP//AB,OB//AP時,同①②可得:直線OP的解析式為y=2x,直線AP的解析式為y=4x-6,聯(lián)立直線OP和AP解析式得:,解得:,∴點P坐標(biāo)為(3,6),綜上所述:存在點P,使以P、A、O、B為頂點的四邊形是平行四邊形,點的坐標(biāo)為(-3,-6),(1,-2)(3,6).【點睛】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與x軸的交點,坐標(biāo)與圖形性質(zhì),以及三角形的面積求法,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、x1=3,x2=1.【解析】試題分析:方程移項后,提取公因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.試題解析:方程變形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=1.考點:解一元二次方程-因式分解法.22、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).【解析】(1)利用待定系數(shù)法將(2,6500),(4,5500)代入y=kx+b求k,b確定表達(dá)式,求當(dāng)x=6時的y值即可;(2)求銷售額w與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的最大值問題求解;(3)分三種情況討論假設(shè)6月份,7月份,8月份的最大銷售為22500萬元時,求相應(yīng)的m值,再分別求出此時另外兩月的總利潤,通過比較作出判斷.【詳解】設(shè)y=kx+b,根據(jù)圖象將(2,6500),(4,5500)代入得,,解得,,∴y=-500x+7500,當(dāng)x=6時,y=-500×6+7500=4500元;(2)設(shè)銷售額為z元,z=yp=(-500x+7500)(x+1)=-500x2+7000x+7500=-500(x-7)2+32000,∵z與x成二次函數(shù),a=-500<0,開口向下,∴當(dāng)x=7時,z有最大值,當(dāng)x=7時,y=-500×7+7500=4000元.答:該產(chǎn)品第7個月的銷售額最大,該月的銷售價格是4000元/臺.(3)z與x的圖象如圖的拋物線當(dāng)y=27500時,-500(x-7)2+32000=27500,解得,x1=10,x2=4∴預(yù)計銷售部符合銷售要求的是4,5,6,7,8,9,10月份.(4)設(shè)總利潤為W=-500x2+7000x+7500-m(x+1)=-500x2+(7000-m)x+7500-m,第一種情況:當(dāng)x=6時,-500×62+(7000-m)×6+7500-m=22500,解得,m=,此時7月份的總利潤為-500×72+(7000-)×7+7500-≈17714<22500,此時8月份的總利潤為-500×82+(7000-)×8+7500-≈19929<22500,∴當(dāng)m=時,6月份利潤最大,且最大值為22500萬元.第二種情況:當(dāng)x=7時,-500×72+(7000-m)×7+7500-m=22500,解得,m=1187.5,此時6月份的總利潤為-500×62+(7000-1187.5)×6+7500-1187.5=23187.5>22500,∴當(dāng)m=1187.5不符合題意,此種情況不存在.第三種情況:當(dāng)x=8時,-500×82+(7000-m)×8+7500-m=22500,解得,m=1000,此時7月份的總利潤為-500×72+(7000-1000)×7+7500-1000=24000>22500,∴當(dāng)m=1000不符合題意,此種情況不存在.∴當(dāng)時銷售利潤最大值為22500萬元時,此時m=.【點睛】本題考查二次函數(shù)的實際應(yīng)用,最大利潤問題,利用二次函數(shù)的最值性質(zhì)是解決實際問題的重要途徑.23、(1)10(2),(3)【分析】(1)根據(jù)直角距離的公式,直接代入求解即可;(2)設(shè)點C的坐標(biāo)為,代入直角距離公式可得根據(jù)根的判別式求出k的值,即可求出點C的坐標(biāo);(3)如圖,⊙C與線段AC交于點D,過點D作與AB交于點E,先證明△ADE是等腰直角三角形,從而得出,再根據(jù)直角距離的定義,即可求出出最低的成本.【詳解】(1)∵,點,點∴;(2)設(shè)點C的坐標(biāo)為∵∴∵∴∴∵符合條件的點有且僅有一個,且∴解得∴解得∴故,;(3)如圖,⊙C與線段AC交于點D,過點D作與AB交于點E由題意得∴∵∴△ADE是等腰直角三角形∴∵步道只能東西或者南北走向,并且東西方向每千米成本是20萬元,南北方向每千米的成本是10萬元∴步道的最短距離為A和D的直角距離,即最低總成本(萬元)故修建這一規(guī)光步道至

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論