初中數(shù)學(xué)北師大八年級下冊三角形的證明-三角形的證明PPT_第1頁
初中數(shù)學(xué)北師大八年級下冊三角形的證明-三角形的證明PPT_第2頁
初中數(shù)學(xué)北師大八年級下冊三角形的證明-三角形的證明PPT_第3頁
初中數(shù)學(xué)北師大八年級下冊三角形的證明-三角形的證明PPT_第4頁
初中數(shù)學(xué)北師大八年級下冊三角形的證明-三角形的證明PPT_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

等腰三角形知識回顧ABC等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合。等腰三角形的兩個底角相等.簡稱:等邊對等角.頂角ABC底邊腰腰底角底角【定義】【性質(zhì)定理】【性質(zhì)定理的推論】有兩邊相等的三角形叫做等腰三角形;D高(簡稱:“三線合一”)如圖,在△ABC中,∵AB=AC,∠1=∠2(已知).∴BD=CD,AD⊥BC(三線合一).

左邊方框中的的格式,以后可以直接運(yùn)用.ACBD12如圖,在△ABC中,∵AB=AC,BD=CD(已知).∴∠1=∠2,AD⊥BC(三線合一).如圖,在△ABC中,∵AB=AC,AD⊥BC(已知).∴BD=CD,∠1=∠2(三線合一).輪換條件∠1=∠2,BD=CD,AD⊥BC可得三線合一的三種不同形式的運(yùn)用.”三線合一“的三種語言及條件的輪換【性質(zhì)定理的推論】等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合。(簡稱:“三線合一”)圖形語言高線?符號語言中線?符號語言角平分線?符號語言1.知識目標(biāo):①探索——發(fā)現(xiàn)——猜想——證明等腰三角形中相等的線段,進(jìn)一步熟悉證明的基本步驟和書寫格式,體會證明的必要性;2.能力目標(biāo):①經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程,讓學(xué)生進(jìn)一步體會證明是探索活動的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力;②在命題的變式中,發(fā)展學(xué)生提出問題的能力,拓展命題的能力,從而提高學(xué)生的學(xué)習(xí)能力和思維能力,提高學(xué)生學(xué)習(xí)的主體性;③在圖形的觀察中,揭示等腰三角形的本質(zhì):對稱性,發(fā)展學(xué)生的幾何直覺;3.情感與價值觀要求①鼓勵學(xué)生積極參與數(shù)學(xué)活動,激發(fā)學(xué)生的好奇心和求知欲.②體驗(yàn)數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性.4.教學(xué)重、難點(diǎn)重點(diǎn):經(jīng)歷“探索——發(fā)現(xiàn)一一猜想——證明”的過程,能夠用綜合法證明有關(guān)三角形和等腰三角形的一些結(jié)論.實(shí)踐觀察猜想證明畫一畫先畫一個等腰三角形,ACB然后在等腰三角形中作出一些線段

(如角平分線、中線、高線),你能發(fā)現(xiàn)其中一些相等的線段嗎?你能證明你的結(jié)論嗎?小結(jié)頂角的平分線、中線、高線都分別只有一條,不能比較;底角的兩條平分線相等;兩條腰上的中線相等;兩條腰上的高線相等。ACBD●●E●●●●ACBMNACBPQ【例1】證明:等腰三角形兩底角的平分線相等.∵AB=AC(已知),∴∠ABC=∠ACB(等邊對等角).ACBDE圖形語言已知:求證:BD=CE.如圖,在△ABC中,AB=AC,BD,CE是△ABC角平分線.證明:12

∠2=(已知),又∵∠1=,∴∠1=∠2(等式性質(zhì)).在△BDC與△CEB中∵∠DCB=∠EBC(已知),

BC=CB(公共邊),

∠1=∠2(已證),∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的對應(yīng)邊相等)

例題欣賞1命題的證明已知:如圖,在△ABC中,AB=AC,

BD、CE是△ABC的角平分線.1.證明:等腰三角形兩底角的平分線相等.用心想一想,馬到功成43EDCBA求證:BD=CE.一題多解證明:∵AB=AC,∴∠ABC=∠ACB.

∵∠3=∠ABC,∠4=∠ACB,∴∠3=∠4.在△ABD和△ACE中,

∵∠3=∠4,AB=AC,∠A=∠A.

∴△ABD≌△ACE(ASA).

∴BD=CE(全等三角形的對應(yīng)邊相等).大膽嘗試,練一練!已知:如圖,在△ABC中,AB=AC,

BM、CN是△ABC的中線.2.證明:等腰三角形兩腰上的中線相等.求證:BM=CN.NMCBA

分析:要證BM=CN,就需證BM和CN所在的兩個三角形的全等.駛向勝利的彼岸命題的證明

我能行1求證:等腰三角形兩腰上的中線相等.證明:∵AB=AC(已知),∴∠ABC=∠ACB(等邊對等角).又∵CM=AC,BN=

AB(已知),∴CM=BN(等式性質(zhì)).在△BMC與△CNB中∵BC=CB(公共邊),∠MCB=∠NBC(已知),

CM=BN(已證),∴△BMC≌△CNB(SAS).∴BM=CN(全等三角形的對應(yīng)邊相等)已知:如圖,在△ABC中,AB=AC,BM,CN是△ABC兩腰上的中線.求證:BM=CN.ACBMN大膽嘗試,練一練!已知:如圖,在△ABC中,AB=AC,

BP、CQ是△ABC的高.3.證明:等腰三角形兩腰上的高相等.求證:BP=CQ.QPCBA

分析:要證BP=CQ,就需證BP和CQ所在的兩個三角形的全等.駛向勝利的彼岸命題的證明

我能行2求證:等腰三角形兩腰上的高相等.證明:∵AB=AC(已知),∴∠ABC=∠ACB(等邊對等角).

又∵BP,CQ是△ABC兩腰上的高(已知),∴∠BPC=∠CQB=900(高的意義).

在△BPC與△CQB中

∵∠BPC=∠CQB(已證),

∠PCB=∠QBC(已證),BC=CB(公共邊),∴△BPC≌△CQB(AAS).∴BP=CQ(全等三角形的對應(yīng)邊相等)已知:如圖,在△ABC中,AB=AC,BP,CQ是△ABC兩腰上的高.求證:BP=CQ.ACBPQ

剛才,我們只是發(fā)現(xiàn)并證明了等腰三角形中比較特殊的線段(角平分線、中線、高)相等,還有其他的結(jié)論嗎?你能從上述證明的過程中得到什么啟示?

把腰二等分的線段相等,把底角二等分的線段相等.如果是三等分、四等分……結(jié)果如何呢?想一想,做一做議一議在等腰三角形ABC中,如果∠ABD=∠ABC,∠ACE=∠ACB,那么BD=CE嗎?為什么?如果∠ABD=∠ABC,∠ACE=∠ACB,那么BD=CE嗎?為什么?如果∠ABD=∠ABC,∠ACE=∠ACB呢?由此,你能得到一個什么結(jié)論?在△ABC中,若AB=AC,∠ABD=∠ABC,∠ACE=∠ACB,那么BD=CE.

簡述為:(1)在△ABC中,如果AB=AC,∠ABD=∠ACE,那么BD=CE.結(jié)論:如果AD=AC,AE=AB,那么BD=CE嗎?如果AD=AC,AE=AB,那么BD=CE嗎?如果AD=AC,AE=AB,那么BD=CE嗎?由此,你能得到一個什么結(jié)論?議一議小結(jié)在△ABC中,如果AB=AC,AD=AC,AE=AB,那么BD=CE.簡述為:

在△ABC中,如果AB=AC,AD=AE,那么BD=CE.1.求證:等邊三角形三個內(nèi)角都相等并且每個內(nèi)角都等于60°.已知:如圖,在△ABC中,AB=BC=AC。求證:∠A=∠B=∠C=60°.證明:在ΔABC中,∵AB=AC,

∴∠B=∠C(等邊對等角).

同理:∠C=∠A,

∴∠A=∠B=∠C(等量代換).

又∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

∴∠A=∠B=∠C=60°.大膽嘗試,練一練!CBA隨堂練習(xí)及時鞏固如圖,已知△ABC和△BDE都是等邊三角形,求證:AE=CDABCDE證明:∵△ABC和△BDE都是等邊三角形∴AB=BC,∠ABC=∠DBE=60°,BE=BD∴△ABE≌△CBD∴AE=CD.將不全等的兩個等邊三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論