管內(nèi)不可壓縮流體流動(dòng)課件_第1頁
管內(nèi)不可壓縮流體流動(dòng)課件_第2頁
管內(nèi)不可壓縮流體流動(dòng)課件_第3頁
管內(nèi)不可壓縮流體流動(dòng)課件_第4頁
管內(nèi)不可壓縮流體流動(dòng)課件_第5頁
已閱讀5頁,還剩151頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第六章管內(nèi)不可壓縮流體流動(dòng)流動(dòng)工程流體力學(xué)1第六章管內(nèi)不可壓縮流體流動(dòng)流動(dòng)工程流體力學(xué)1工業(yè)應(yīng)用——管道管道類型——流動(dòng)狀態(tài)——損失形式圓管層流沿程損失流體的輸送伯努里方程中的損失項(xiàng)能量損失非圓管湍流局部損失2工業(yè)應(yīng)用——管道管道類型——流動(dòng)狀態(tài)——損失形式第一節(jié)沿程損失和局部損失

由于粘性產(chǎn)生流動(dòng)阻力,使機(jī)械能轉(zhuǎn)化為熱能而散失,從而造成機(jī)械能損失。按流動(dòng)情況,能量損失可分為沿程損失和局部損失。

一沿程阻力(摩擦阻力)與沿程損失沿程阻力:在邊界沿程不變的均勻流段上,流動(dòng)阻力就只有沿程不變的摩擦阻力,稱為沿程阻力。沿程損失:客服沿程阻力所產(chǎn)生的能量損失。沿程損失的特點(diǎn):均勻分布在整個(gè)流段上,與長(zhǎng)度成正比。用水頭損失表示時(shí),稱為沿程水頭損失,用hf表示。3第一節(jié)沿程損失和局部損失由于粘性產(chǎn)生流動(dòng)阻力,使機(jī)械能沿程損失的計(jì)算對(duì)于圓管內(nèi)流動(dòng),水頭損失為——達(dá)西公式λ——沿程阻力系數(shù)l——管長(zhǎng)d——管徑對(duì)于氣體,采用壓力損失,有4沿程損失的計(jì)算——達(dá)西公式λ——沿程阻力系數(shù)對(duì)于氣體,采二局部阻力與局部損失局部阻力:在邊壁形狀沿程急劇變化,流速分布急劇調(diào)整的局部區(qū)段上,產(chǎn)生的流動(dòng)阻力稱為局部阻力。局部損失:克服局部阻力引起的能量損失稱為局部損失。符號(hào):hj局部損失計(jì)算公式ζ

——局部阻力系數(shù)5二局部阻力與局部損失局部阻力:在邊壁形狀沿程急劇變化,流速整個(gè)流道水頭損失hw為本章的主要問題就是在不同流態(tài)、不同管道類型時(shí)計(jì)算沿程阻力系數(shù)和局部阻力系數(shù)abchjahfabhjbhfbchjc6整個(gè)流道水頭損失hw為本章的主要問題就是在不同流態(tài)、不同管第二節(jié)層流與湍流流動(dòng)一兩種流態(tài)——觀察試驗(yàn)(緩慢改變流速)1速度由小到大,即上行過程7第二節(jié)層流與湍流流動(dòng)一兩種流態(tài)——觀察試驗(yàn)(緩層流v<vc過渡流vc<v<vc'湍流v>vc'(a)低速時(shí),流線保持直線,色線穩(wěn)定——層流;(b)加大流速,紅線(或藍(lán)線)呈波紋狀,流動(dòng)不穩(wěn)定——過渡流;(c)繼續(xù)加大流速,紅線劇烈波動(dòng),最后斷裂,紅色充滿全管——湍流(紊流)。vcvc'8層流v<vc(a)低速時(shí),流線保持直線,色2下行,即速度由大到小vc——下臨界速度vc'——上臨界速度上行時(shí),速度由小到大,因無外界擾動(dòng),故達(dá)到紊流的上臨界速度較大。但實(shí)際流動(dòng)難免有擾動(dòng),故vc'

無實(shí)際意義。實(shí)際以vc作為判斷的標(biāo)準(zhǔn)。v<vc時(shí)達(dá)到層流92下行,即速度由大到小vc——下臨界速度v<vc時(shí)二能量損失總流的伯努里方程lgvlghfABDCvcvc’n=1.75~2.0n=1.0E對(duì)數(shù)坐標(biāo),范圍較大上行時(shí),由B點(diǎn)開始轉(zhuǎn)化為湍流;下行時(shí),沿BCA變化,在A點(diǎn)達(dá)到層流。層流時(shí),hf

隨v1.0變化湍流時(shí),hf

隨vn

變化,n

=1.75~2.0。10二能量損失總流的伯努里方程lgvlghfABDCvcv三雷諾數(shù)依靠臨界速度判別流動(dòng)狀態(tài)不方便。又因?yàn)榕R界速度隨密度、粘性及流道尺寸發(fā)生變化。故由實(shí)驗(yàn)歸納出了一個(gè)無量綱參數(shù)用于判別流動(dòng)狀態(tài)。反映慣性力與粘性力之比粘性力使流動(dòng)穩(wěn)定;慣性力使流動(dòng)不穩(wěn)定故,Re越大,流動(dòng)將趨于紊流。與臨界速度vc對(duì)應(yīng)的Re稱為臨界Re。用Rec表示。即區(qū)域劃分:Re<2000,為層流;2000<Re<4000,為過渡流;Re>4000,為湍流。

為簡(jiǎn)便起見,不考慮過渡流11三雷諾數(shù)依靠臨界速度判別流動(dòng)狀態(tài)不方便。又因?yàn)榕R界速度隨第三節(jié)圓管內(nèi)層流流動(dòng)層流流動(dòng)具有較強(qiáng)的規(guī)律性,根據(jù)受力分析,可從理論上導(dǎo)出沿程阻力系數(shù)λ的計(jì)算公式一等截面管道內(nèi)粘性流動(dòng)沿程水頭損失對(duì)截面1-1和2-2列伯努里方程由均勻流動(dòng)的性質(zhì)p1Ap2Aτ0l12α12第三節(jié)圓管內(nèi)層流流動(dòng)層流流動(dòng)具有較強(qiáng)的規(guī)律性,根據(jù)受力分對(duì)1-1和2-2之間的控制體進(jìn)行,受到的力有:p1、p2、重力、壁面切應(yīng)力τ0由受力平衡:管長(zhǎng)圓管半徑p1Ap2Aτ0l12α兩邊同時(shí)除以,并利用A=πr02得13對(duì)1-1和2-2之間的控制體進(jìn)行,受到的力有:p1、p2、重表明,沿程阻力損失主要是因?yàn)槟Σ磷枇Φ淖饔?4表明,沿程阻力損失主要是因?yàn)槟Σ磷枇Φ淖饔?4二圓管內(nèi)切應(yīng)力分布對(duì)于任意半徑處表明:在圓管斷面上,切應(yīng)力呈直線分布,r=0處,;處,,達(dá)最大。15二圓管內(nèi)切應(yīng)力分布對(duì)于任意半徑處表明:在圓管斷面上,切三沿程阻力系數(shù)的計(jì)算由牛頓內(nèi)摩擦定律:加負(fù)號(hào),表示u隨r的增大而減小由有則積分得:將,u=0代入得,16三沿程阻力系數(shù)的計(jì)算由牛頓內(nèi)摩擦定律:加負(fù)號(hào),表示u隨故是以管中心線為軸的旋轉(zhuǎn)拋物面。r=0時(shí),即在管軸處,速度達(dá)最大值:

由平均流速定義式得所以,

17故是以管中心線為軸的旋轉(zhuǎn)拋物面。r=0時(shí),即在管軸處,速度從而有比較得適用條件:層流Re<2000。

18從而有比較得適用條件:層流Re<2000。18四層流流動(dòng)入口段長(zhǎng)度進(jìn)入斷面速度均勻,由于受到壁面的影響,壁面附近速度降低,中間速度增加,并趨向于拋物線發(fā)展,最終形成拋物線。理論上需無限長(zhǎng)的距離才能達(dá)到完全拋物線。實(shí)際中,定義中心點(diǎn)速度達(dá)到理論最大速度的99%時(shí)的管道長(zhǎng)度為入口段長(zhǎng)度?;?qū)τ谂R界Re=2000時(shí),19四層流流動(dòng)入口段長(zhǎng)度進(jìn)入斷面速度均勻,由于受到壁面的影例1一水平輸油管,AB段長(zhǎng)l=500m,測(cè)得pA=3atm,pB=2atm。通過的流量qv=0.016m3/s,ν=171×10-6m2/s,ρ=890kg/m3。求管徑。解:計(jì)算沿程損失:

因油管水平放置,故m(油柱)假設(shè)管內(nèi)為層流流動(dòng),20例1一水平輸油管,AB段長(zhǎng)l=500m,測(cè)得pA=3atm將,代入得整理得

解得d=0.15m驗(yàn)算:

為層流,結(jié)果正確。21將,代入得整理得解得d=0.15m驗(yàn)算:為層流例2圖示一測(cè)定流體粘性的裝置。管長(zhǎng)l=2m,d=6mm。水銀差壓計(jì)的讀數(shù)為h=120mm,流量qv=7.3cm3/s。液體密度ρ=900kg/m3。求μ。解:由水銀差壓計(jì)得阻力損失為qvdhl管內(nèi)流速

22例2圖示一測(cè)定流體粘性的裝置。管長(zhǎng)l=2m,d=6mm。水假設(shè)管內(nèi)為層流流動(dòng),,則驗(yàn)算,,正確總結(jié):計(jì)算阻力損失問題比較簡(jiǎn)單。若計(jì)算其它量如流量或管道尺寸,則阻力損失已知,此時(shí)要先假定流態(tài),獲得阻力計(jì)算公式,與其它量聯(lián)系起來,然后進(jìn)行驗(yàn)算。23假設(shè)管內(nèi)為層流流動(dòng),,則驗(yàn)算,,正確總結(jié):計(jì)算阻力損失問第四節(jié)圓管內(nèi)湍流流動(dòng)一湍流流動(dòng)的時(shí)均值與脈動(dòng)值某點(diǎn)的速度不是固定的常數(shù),而是隨著時(shí)間脈動(dòng)。在某一時(shí)間段內(nèi)速度為一常數(shù)。對(duì)于一個(gè)恒定流動(dòng),在一定時(shí)間段內(nèi),某點(diǎn)速度的時(shí)間平均值為一常數(shù)。因此,如果在時(shí)間T內(nèi)求該點(diǎn)的平均值,則稱為時(shí)均速度。時(shí)均速度24第四節(jié)圓管內(nèi)湍流流動(dòng)一湍流流動(dòng)的時(shí)均值與脈動(dòng)值x方向湍流瞬時(shí)速度為時(shí)均速度與脈動(dòng)速度之和,即因此對(duì)于瞬時(shí)壓力p,時(shí)均壓力和脈動(dòng)壓力25x方向湍流瞬時(shí)速度為時(shí)均速度與脈動(dòng)速度之和,即因此對(duì)于瞬湍流強(qiáng)度(簡(jiǎn)稱湍流度),表示紊流脈動(dòng)的強(qiáng)弱程度,定義為:區(qū)分

時(shí)均速度:空間某點(diǎn)流態(tài)瞬時(shí)速度對(duì)時(shí)間的平均值。平均速度:某一有效截面上各點(diǎn)流態(tài)瞬時(shí)速度對(duì)截面積的平均值。脈動(dòng)速度:瞬時(shí)速度與時(shí)均速度之差。26湍流強(qiáng)度(簡(jiǎn)稱湍流度),表示紊流脈動(dòng)的強(qiáng)弱程度,定義為:區(qū)分二湍流切應(yīng)力與混合長(zhǎng)度理論由于脈動(dòng),流層間有動(dòng)量交換,使兩層流體受到附加的切應(yīng)力的作用,稱為附加切應(yīng)力。理解:流層間的動(dòng)量交換減緩了流層的相對(duì)運(yùn)動(dòng)速率,相當(dāng)于受到附加切應(yīng)力。湍流附加切應(yīng)力由脈動(dòng)速度引起:與符號(hào)相反,故加負(fù)號(hào)。理解:27二湍流切應(yīng)力與混合長(zhǎng)度理論由于脈動(dòng),流層間有動(dòng)量交換,因流層相對(duì)運(yùn)動(dòng)產(chǎn)生的粘性切應(yīng)力湍流總切應(yīng)力脈動(dòng)速度的計(jì)算方法?混合長(zhǎng)度理論假定1:在脈動(dòng)過程中,存在著一個(gè)與分子平均自由路程相當(dāng)?shù)木嚯xl'。微團(tuán)只有在經(jīng)過這段距離后,才與周圍流體相混合,動(dòng)量才會(huì)變化。相距l(xiāng)'的兩層流體的時(shí)均速度差為:表示成時(shí)均速度的函數(shù)28因流層相對(duì)運(yùn)動(dòng)產(chǎn)生的粘性切應(yīng)力湍流總切應(yīng)力脈動(dòng)速度的計(jì)算假定2:脈動(dòng)速度絕對(duì)值的時(shí)均值與時(shí)均流速差成正比認(rèn)為:與成比例,則c1、c2為常數(shù)l

——混合長(zhǎng)度29假定2:脈動(dòng)速度絕對(duì)值的時(shí)均值與時(shí)均流速差成正比認(rèn)為:表明:時(shí)均速度越大,湍動(dòng)越劇烈,湍流切應(yīng)力的影響越大,τl的影響越小?;旌祥L(zhǎng)度理論將湍流計(jì)算的問題轉(zhuǎn)化為混合長(zhǎng)度的確定上。對(duì)于圓管內(nèi)流動(dòng),取l=Ky,K=0.4對(duì)圓管內(nèi)充分發(fā)展流動(dòng):y是離壁面的距離;r0是圓管半徑。Re=1.1×105~3.2×106

30表明:時(shí)均速度越大,湍動(dòng)越劇烈,湍流切應(yīng)力的影響越大,τl第五節(jié)湍流流動(dòng)沿程阻力計(jì)算一沿程阻力系數(shù)及其影響因素的分析層流:湍流:(1)由層流過渡,沿程阻力系數(shù)仍受Re的影響;(2)湍流時(shí),粗糙度會(huì)產(chǎn)生流動(dòng)阻力;粗糙度影響脈動(dòng)速度,脈動(dòng)速度影響流動(dòng)過程——沿程阻力沿程阻力系數(shù)僅與Re有關(guān)影響沿程阻力系數(shù)的因素:Re和壁面粗糙e。31第五節(jié)湍流流動(dòng)沿程阻力計(jì)算一沿程阻力系數(shù)及其影響因素的尼古拉茲實(shí)驗(yàn):不同粗糙度、不同Re時(shí)的沿程阻力系數(shù)。絕對(duì)粗糙度/粗糙突起的高度:e相對(duì)粗糙度:e/d實(shí)際工業(yè)管道粗糙度分布不均勻。尼古拉茲粗糙:在光滑管道內(nèi)壁粘附直徑基本相同的砂粒,砂粒的直徑即為管道的絕對(duì)粗糙度。32尼古拉茲實(shí)驗(yàn):不同粗糙度、不同Re時(shí)的沿程阻力系數(shù)。絕對(duì)粗糙二粘性底層粘性底層:緊靠壁面存在有一個(gè)粘性切應(yīng)力起主導(dǎo)作用的薄層。由于粘性底層受到臨近的湍流的影響,不是真正的層流底層。其厚度為δv

湍流核心:離邊壁不遠(yuǎn)到管中心絕大部分區(qū)域速度分布較均勻,處于湍流運(yùn)動(dòng)狀態(tài),湍流切應(yīng)力起主導(dǎo)作用,這一區(qū)域稱為湍流核心。過渡層:湍流核心和粘性底層之間存在一個(gè)范圍很小的過渡層。通常可不考慮。33二粘性底層粘性底層:緊靠壁面存在有一個(gè)粘性切應(yīng)力起主導(dǎo)作用光滑管道粘性底層的厚度:表明:速度,或,根據(jù)粘性底層的厚度與粗糙度的相對(duì)大小,將湍流分為三個(gè)阻力區(qū):(1)水力光滑區(qū):粘性底層的厚度δv大于粗糙突起的高度e,即δv

>e,λ僅與Re有關(guān),而與e/d無關(guān);(2)湍流過渡區(qū):粘性底層的厚度δv

變薄,接近粗糙突起的高度e,λ與Re和e/d有關(guān);(3)完全湍流區(qū)(充分粗糙):粗糙突起幾乎全部暴露在湍流核心區(qū),λ僅與e/d有關(guān);34光滑管道粘性底層的厚度:表明:速度,或eee水力光滑區(qū)過渡區(qū)粗糙區(qū)湍流粗糙區(qū)λ僅與e/d有關(guān)

據(jù)hf與v2成正比,因此充分粗糙區(qū)又稱阻力平方區(qū)35eee水力光滑區(qū)過渡區(qū)粗糙區(qū)湍流粗糙區(qū)λ僅與e/d有關(guān)據(jù)三沿程阻力系數(shù)的計(jì)算1當(dāng)量粗糙度尼古拉茲的人工粗糙管內(nèi)壁各處粗糙度大致相等。但工業(yè)管道粗糙高度、形狀和分布都無規(guī)律,故引入當(dāng)量粗糙度。

將工業(yè)管道與尼古拉茲的人工粗糙管在完全湍流下等直徑進(jìn)行實(shí)驗(yàn),若實(shí)驗(yàn)測(cè)得的λ相等,則工業(yè)管道的粗糙度就與人工管道的粗糙度相等,此時(shí)用人工管道的粗糙度表示工業(yè)管道的粗糙度,即為當(dāng)量粗糙度。對(duì)于不同的工業(yè)管道,已由實(shí)驗(yàn)測(cè)得了其當(dāng)量粗糙度,并制成表供使用查找。36三沿程阻力系數(shù)的計(jì)算1當(dāng)量粗糙度尼古拉茲的人工粗糙管內(nèi)2阻力系數(shù)計(jì)算1水力光滑Re<105時(shí)七一定律與e無關(guān)372阻力系數(shù)計(jì)算1水力光滑Re<105時(shí)七一定律與2湍流粗糙區(qū)僅與e有關(guān)3過渡區(qū)該公式實(shí)際上是兩個(gè)公式的疊加。計(jì)算時(shí)要利用迭代。下面一個(gè)公式計(jì)算時(shí)比較簡(jiǎn)單,且誤差不大(5-39)阻力平方區(qū)382湍流粗糙區(qū)僅與e有關(guān)3過渡區(qū)該公式實(shí)際上是兩個(gè)3莫迪圖由公式繪制。通過Re

和e/d查λ莫迪圖的優(yōu)點(diǎn)是使用方便;缺點(diǎn)是精度較低,不同的使用人員得到的結(jié)果也不同。圖說明:分成五個(gè)區(qū),采用對(duì)數(shù)坐標(biāo),縱坐標(biāo)左邊為右邊為e/d,數(shù)值對(duì)應(yīng)曲線。1層流區(qū):可直接由公式計(jì)算2臨界區(qū):值不確定,很少采用3水力光滑區(qū)4湍流過渡區(qū)5湍流粗糙區(qū)393莫迪圖由公式繪制。通過Re和e/d查λ莫迪圖的優(yōu)0.050.040.030.020.0150.010.0080.0060.0040.0020.0010.00080.00060.00040.00020.00010.000,050.000,010.10.090.080.070.060.050.040.030.0250.020.0150.010.0090.008層流區(qū)臨界區(qū)過渡區(qū)紊流粗糙區(qū)光滑管區(qū)103104105238654234568234568234568234568106107108delRe000001.0=dK000005.0=dKRe=1.5×105,e/d=0.003400.050.040.030.020.0150.010.008例3已知通道d=200mm,l=300m,e=0.4mm,qv=1000m3/h,ν=2.5×10-6m2/s,求單位重量流體的沿程損失。

解:平均流速為根據(jù)和e/d=0.4/200=0.002查莫迪圖得則41例3已知通道d=200mm,l=300m,e=0.4mm,或由公式計(jì)算:解得:若用公式(5-38),則要用迭代的方法42或由公式計(jì)算:解得:若用公式(5-38),則要用迭代的方法例4已知某管內(nèi)油的體積流量qv=1000m3/h,ν

=1.0×10-5m2/s,管長(zhǎng)l=200m,e=0.046mm。允許的最大沿程損失hf=20m。試確定管道直徑d。解:平均流速,則由得(1)(2)43例4已知某管內(nèi)油的體積流量qv=1000m3/h,ν=1試取代入(1)得,d=0.264m,再代入(2)式得Re=134000。e/d=0.046×10-3/0.264=0.00017。由此查莫迪圖得

以查得的λ

值作為改進(jìn)值,重復(fù)上述計(jì)算,得d=0.253m,Re=140000,e/d=0.000182,由莫迪圖查得以作為改進(jìn)值,重復(fù)計(jì)算,得d=0.252m,與上次計(jì)算相同,故計(jì)算結(jié)束Re=140500,e/d=0.000183,由莫迪圖查得所以,管徑d=0.252m=252mm。44試取代入(1)得,d=0.264m,再代入(2)式得Re=若為非圓管沿程損失例5-1245若為非圓管沿程損失例5-1245第六節(jié)局部阻力損失斷面變化,彎管,閥門等都會(huì)引起局部阻力損失。阻力應(yīng)與Re有關(guān),但由于局部影響使流動(dòng)較早進(jìn)入阻力平方區(qū),此時(shí)可認(rèn)為λ與Re無關(guān),只決定于形狀。針對(duì)不同形狀的局部特征,介紹局部阻力系數(shù)。要求:會(huì)查表應(yīng)用。造成局部損失的原因是湍流和旋渦運(yùn)動(dòng),消耗能量。46第六節(jié)局部阻力損失斷面變化,彎管,閥門等都會(huì)引起局部阻力一管道進(jìn)口處損失局部阻力系數(shù)與入口形狀有關(guān),對(duì)不同情況可查閱數(shù)據(jù)。α直角(銳角)進(jìn)口:0.5圓角進(jìn)口,圓管:0.1方管:0.2喇叭形:0.01~0.05深入形:1.0切角進(jìn)口:0.25斜角進(jìn)口:銳角圓角喇叭形切角深入斜角47一管道進(jìn)口處損失局部阻力系數(shù)與入口形狀有關(guān),對(duì)不同情況可二突然擴(kuò)大損失(可由理論推導(dǎo)得出)p'p112設(shè)流體不可壓縮,由連續(xù)性方程得由動(dòng)量方程實(shí)驗(yàn)證明:故48二突然擴(kuò)大損失(可由理論推導(dǎo)得出)p'p112設(shè)流體不可列1、2斷面的伯努里方程:p’p112又由得,代入上式得則——此時(shí)以v1為基準(zhǔn)49列1、2斷面的伯努里方程:p’p112又由得,代入上式得同理,以v2為基準(zhǔn)時(shí),有

p’p112——以v2為基準(zhǔn)三突然收縮損失A1A2若A1無窮大,即對(duì)于大容器,有此時(shí),就相當(dāng)于直角進(jìn)口。50同理,以v2為基準(zhǔn)時(shí),有p’p112——以v2為基準(zhǔn)三四漸擴(kuò)管和減縮管代替突然擴(kuò)大與突然收縮,可減低能量損失。v1v2d2d1v1v2d2d1θθ

即以出口速度為基準(zhǔn)51四漸擴(kuò)管和減縮管代替突然擴(kuò)大與突然收縮,可減低能量損失。五彎管彎曲圓管內(nèi)形成二次流:與主流方向正交的流動(dòng)。由于離心力的作用,彎管外測(cè)壓力高于內(nèi)側(cè)。為減小突然彎曲管能量損失,可用導(dǎo)流葉片。如對(duì)于90°的直角彎管,有導(dǎo)流葉片時(shí),無導(dǎo)流葉片時(shí),

52五彎管彎曲圓管內(nèi)形成二次流:與主流方向正交的流動(dòng)。由于離六附件如閥門,不同角度的彎頭列出表格,供查找。表5.5還有很多類型,分布于不同的參考資料,可搜集整理。一般習(xí)題中會(huì)給出。為減小能量損失,要設(shè)計(jì)一些減阻方案,以達(dá)到減小阻力,節(jié)約能源的目的。減小流動(dòng)阻力——節(jié)能53六附件53第七節(jié)管路流動(dòng)計(jì)算工業(yè)設(shè)計(jì)目的:設(shè)計(jì)管路系統(tǒng),盡量減少動(dòng)力消耗,節(jié)約能源和原材料。方法:利用連續(xù)性方程,伯努里方程,能量方程。計(jì)算量:流量,管道尺寸,阻力(損失)分類:①上述三個(gè)量中,已知其中兩個(gè),求另外一個(gè)。②按損失類別分類:長(zhǎng)管:水頭損失以沿程損失為主,局部損失很??;短管:沿程損失與局部損失所占比重相當(dāng)。③按管路系統(tǒng)的布置形式:簡(jiǎn)單管路;復(fù)雜管路:串聯(lián)管路、并聯(lián)管路、分支管路、均勻泄流、管網(wǎng)54第七節(jié)管路流動(dòng)計(jì)算工業(yè)設(shè)計(jì)54一簡(jiǎn)單管路管徑和粗糙度均相同的一根管子或由這樣的數(shù)根管段串聯(lián)在一起組成的管路系統(tǒng),稱為簡(jiǎn)單管路。例5.11——寫出伯努里方程,再進(jìn)行簡(jiǎn)化,虹吸管中壓力最低的點(diǎn)為最高點(diǎn)局部損失后例5.12——水力直徑的應(yīng)用,即非圓管55一簡(jiǎn)單管路例5.11——寫出伯努里方程,再進(jìn)行簡(jiǎn)化,虹吸管二管路中有泵或風(fēng)機(jī)的計(jì)算揚(yáng)程:?jiǎn)挝恢亓苛黧w從泵或風(fēng)機(jī)進(jìn)口截面1到出口截面2所獲得的機(jī)械能。符號(hào):hp,單位:m。對(duì)于風(fēng)機(jī),用壓力表示,pp,單位:Pa111'1'2'2'22根據(jù)揚(yáng)程的定義,它是流體能量的增量,因此代入伯努利方程時(shí),在方程的左邊;而對(duì)于水輪機(jī),由于要消耗利用流體的能量,故放在方程的右邊。56二管路中有泵或風(fēng)機(jī)的計(jì)算揚(yáng)程:?jiǎn)挝恢亓苛黧w從泵或風(fēng)機(jī)進(jìn)口例5如圖示,水輪機(jī)從水流獲得功率P=37.3kw。水管直徑d=0.305m,長(zhǎng)l=91.4m,λ=0.02。局部能量損失忽略。求通過水管的水流量。z2=021z1=27.4mλ=0.02v水輪機(jī)解:對(duì)1和2列伯努里方程得ht表示水輪機(jī)從水中獲得的能量。

式中,z1=27.4m,z2=0,p1=p2=pa,v1=0,v2=v57例5如圖示,水輪機(jī)從水流獲得功率P=37.3kw。水管直沿程損失:由水輪機(jī)的功率:得(根據(jù):)水輪機(jī)的工作水頭為:58沿程損失:由水輪機(jī)的功率:得(根據(jù):

于是得解得:v=7.58m/s或v=2.01m/s故體積流量為:或59于是得解得:v=7.58m/s或v=2.01三串聯(lián)管路qv1

qv2

串聯(lián)管路的特點(diǎn):

(1)各管路的流量相等,即qV1=qV2=qV3(質(zhì)量守恒)(2)總損失為各管路損失之和,即hl

=hl1+hl2+hl3

并聯(lián)電路的特點(diǎn)60三串聯(lián)管路qv1qv2串聯(lián)管路的特點(diǎn):

(1例6:兩水箱水面高度差Δz=6m,串聯(lián)管路l1=300mm,d1=0.6m,e1=0.0015m,l2=240m,d2=0.9m,e2=0.0003m。水的運(yùn)動(dòng)粘度ν

=1×10-6m2/s。求通過該管道的流量。21ABΔzζ1ζ2ζ3解:對(duì)A、B面寫出伯努里方程式中,pA=pB=0,vA=vB=0,故61例6:兩水箱水面高度差Δz=6m,串聯(lián)管路l1=300mm,21ABΔZζ1ζ2ζ3串聯(lián)管路水頭損失可計(jì)算如下ζ1、ζ2、ζ3分別為串聯(lián)管道進(jìn)口、截面突然擴(kuò)大和出口的局部阻力系數(shù)ζ1=0.5ζ3=1由連續(xù)性方程得6221ABΔZζ1ζ2ζ3串聯(lián)管路水頭損失可計(jì)算如下ζ1、ζ綜合上述方程得:

代入數(shù)據(jù)化簡(jiǎn)得由于e1/d1=0.0015/0.6=0.0025e2/d2=0.0003/0.9=0.000333參照莫迪圖,假設(shè)λ1=0.025,λ2=0.015。代入上式得v1=2.87m/s,

63綜合上述方程得:代入數(shù)據(jù)化簡(jiǎn)得由于e1/d1=0.00于是,

由此,據(jù)相對(duì)粗糙度和Re再查莫迪圖得λ1=0.025,λ2=0.016,基本吻合。再代入λ1和λ2代入得新的v1=2.86m/s。故64于是,由此,據(jù)相對(duì)粗糙度和Re再查莫迪圖得λ1=0.025四并聯(lián)管路123ab并聯(lián)管路的特點(diǎn):

(1)總流量為各管路流量之和,即qV=qV1+qV2+qV3(2)a、b兩節(jié)點(diǎn)的阻力損失,即總損失,等于通過任一條管路的能量損失,即

hl1=hl2=hl3

65四并聯(lián)管路123ab并聯(lián)管路的特點(diǎn):

(1)總流量為各管例7:如圖示并聯(lián)管路。l1=1000mm,d1=0.3m,l2=600m,d2=0.2m,l3=1200m,d3=0.4m,λ=0.025。B點(diǎn)相對(duì)壓力pB=8.5×104Pa,zB=26m,zC=24m??偭髁縬V=0.4m3/s。求qV1、qV2、qV3及C點(diǎn)的壓力pC。(總管AB和CD相同)BADCqVqVqV2qV3qV1解:本題利用公式計(jì)算

66例7:如圖示并聯(lián)管路。l1=1000mm,d1=0.3m,l(1)由沿程阻力公式:得,三個(gè)并聯(lián)管路的沿程阻力分別為對(duì)于并聯(lián)管路,有故67(1)由沿程阻力公式:得,三個(gè)并聯(lián)管路的沿程阻力分別為對(duì)于又聯(lián)立上面方程得(2)對(duì)B、C列伯努里方程BADCqVqVqV2qV3qV1因?yàn)関B=vC,hfB-C=hf1=hf2=hf3,則68又聯(lián)立上面方程得(2)對(duì)B、C列伯努里方程BADCqVq五分叉管路系統(tǒng)是指在管路中某一節(jié)點(diǎn)分出支路后不再匯合。qv1qv2qv3ABCqv1=qv2+qv3管路中公共點(diǎn)處水頭H相等。沿任一條管線上的總水頭損失等于各段管路的水頭損失之和,如圖中的ABC管線,其總水頭損失為,另外,由于兩個(gè)分支管線通向同一個(gè)容器,它們的水頭相等,則69五分叉管路系統(tǒng)是指在管路中某一節(jié)點(diǎn)分出支路后不再匯合。例8:A、B、C水箱水面的高度分別為100m、20m和0m,l1=1000m,l2=500m,l3=400m。直徑均為1m,λ=0.02,忽略局部損失,求流入或流出每個(gè)水箱的流量。ABC(1)(2)(3)解:對(duì)于三個(gè)水箱,A水箱的水流出,C水箱有水流入,B水量不確定,假設(shè)水流入水箱B。則因各管徑相同,則可寫出v1+v2=v3

(1)70例8:A、B、C水箱水面的高度分別為100m、20m和0m對(duì)A、C截面列伯努里方程pA=pC=pa,則代入數(shù)據(jù)得(2)71對(duì)A、C截面列伯努里方程pA=pC=pa,則代對(duì)B、C列伯努里方程ABC(1)(2)(3)同上,化簡(jiǎn)得代入數(shù)據(jù)化簡(jiǎn)得(3)聯(lián)立方程(1)、(2)和(3),無解72對(duì)B、C列伯努里方程ABC(1)(2)(3)同上,化簡(jiǎn)得故假設(shè)B水箱的水流出是錯(cuò)誤的,重新假設(shè)水流入B水箱。則由連續(xù)性方程得同樣可得v1=v2+v3

ABC(1)(2)(3)(4)分別寫出A、B和A、C截面的伯努里方程得73故假設(shè)B水箱的水流出是由連續(xù)性方程得同樣可得v1=v2代入數(shù)據(jù)并簡(jiǎn)化得(5)(6)聯(lián)立方程(4)、(5)和(6)得于是74代入數(shù)據(jù)并簡(jiǎn)化得(5)(6)聯(lián)立方程(4)、(5)和(六管網(wǎng)1枝狀管網(wǎng)123456qV1qV2qV3qV管網(wǎng)說明:1-4與3-4并聯(lián),又與4-5串聯(lián);4-5與2-5并聯(lián),又與5-6串聯(lián)

1、2、3通大氣75六管網(wǎng)1枝狀管網(wǎng)123456qV1qV2qV3qV管網(wǎng)2環(huán)狀管網(wǎng)由若干條管路相連接,在節(jié)點(diǎn)處流出的流量來自幾個(gè)環(huán)路的管道系統(tǒng),稱為環(huán)狀管網(wǎng)。計(jì)算比較復(fù)雜,難用解析的方法求解——計(jì)算機(jī)輔助計(jì)算(龐大的方程組,方程個(gè)數(shù)與管路條數(shù)有關(guān))計(jì)算所遵循的原則:(1)據(jù)連續(xù)性條件。對(duì)于任一節(jié)點(diǎn),流入的流量與流出的流量相等。以流入為正,流出為負(fù),則對(duì)某一點(diǎn)有(2)任一閉合回路的水頭損失代數(shù)和為0。以環(huán)內(nèi)逆時(shí)針方向流動(dòng)的水頭為正,順時(shí)針方向流動(dòng)的水頭損失為負(fù)(或反之)762環(huán)狀管網(wǎng)由若干條管路相連接,在節(jié)點(diǎn)處流出的流量來自幾個(gè)環(huán)第八節(jié)管路中的水錘現(xiàn)象有壓管中運(yùn)動(dòng)著的液體,由于閥門或水泵突然關(guān)閉,使得液體速度和動(dòng)量發(fā)生急劇變化,從而引起液體壓力的驟然變化,這種現(xiàn)象稱為水錘現(xiàn)象。閥門關(guān)閉,壓力形成真空再次反向增加,反向傳播77第八節(jié)管路中的水錘現(xiàn)象有壓管中運(yùn)動(dòng)著的液體,由于閥門或水泵7878第六章管內(nèi)不可壓縮流體流動(dòng)流動(dòng)工程流體力學(xué)79第六章管內(nèi)不可壓縮流體流動(dòng)流動(dòng)工程流體力學(xué)1工業(yè)應(yīng)用——管道管道類型——流動(dòng)狀態(tài)——損失形式圓管層流沿程損失流體的輸送伯努里方程中的損失項(xiàng)能量損失非圓管湍流局部損失80工業(yè)應(yīng)用——管道管道類型——流動(dòng)狀態(tài)——損失形式第一節(jié)沿程損失和局部損失

由于粘性產(chǎn)生流動(dòng)阻力,使機(jī)械能轉(zhuǎn)化為熱能而散失,從而造成機(jī)械能損失。按流動(dòng)情況,能量損失可分為沿程損失和局部損失。

一沿程阻力(摩擦阻力)與沿程損失沿程阻力:在邊界沿程不變的均勻流段上,流動(dòng)阻力就只有沿程不變的摩擦阻力,稱為沿程阻力。沿程損失:客服沿程阻力所產(chǎn)生的能量損失。沿程損失的特點(diǎn):均勻分布在整個(gè)流段上,與長(zhǎng)度成正比。用水頭損失表示時(shí),稱為沿程水頭損失,用hf表示。81第一節(jié)沿程損失和局部損失由于粘性產(chǎn)生流動(dòng)阻力,使機(jī)械能沿程損失的計(jì)算對(duì)于圓管內(nèi)流動(dòng),水頭損失為——達(dá)西公式λ——沿程阻力系數(shù)l——管長(zhǎng)d——管徑對(duì)于氣體,采用壓力損失,有82沿程損失的計(jì)算——達(dá)西公式λ——沿程阻力系數(shù)對(duì)于氣體,采二局部阻力與局部損失局部阻力:在邊壁形狀沿程急劇變化,流速分布急劇調(diào)整的局部區(qū)段上,產(chǎn)生的流動(dòng)阻力稱為局部阻力。局部損失:克服局部阻力引起的能量損失稱為局部損失。符號(hào):hj局部損失計(jì)算公式ζ

——局部阻力系數(shù)83二局部阻力與局部損失局部阻力:在邊壁形狀沿程急劇變化,流速整個(gè)流道水頭損失hw為本章的主要問題就是在不同流態(tài)、不同管道類型時(shí)計(jì)算沿程阻力系數(shù)和局部阻力系數(shù)abchjahfabhjbhfbchjc84整個(gè)流道水頭損失hw為本章的主要問題就是在不同流態(tài)、不同管第二節(jié)層流與湍流流動(dòng)一兩種流態(tài)——觀察試驗(yàn)(緩慢改變流速)1速度由小到大,即上行過程85第二節(jié)層流與湍流流動(dòng)一兩種流態(tài)——觀察試驗(yàn)(緩層流v<vc過渡流vc<v<vc'湍流v>vc'(a)低速時(shí),流線保持直線,色線穩(wěn)定——層流;(b)加大流速,紅線(或藍(lán)線)呈波紋狀,流動(dòng)不穩(wěn)定——過渡流;(c)繼續(xù)加大流速,紅線劇烈波動(dòng),最后斷裂,紅色充滿全管——湍流(紊流)。vcvc'86層流v<vc(a)低速時(shí),流線保持直線,色2下行,即速度由大到小vc——下臨界速度vc'——上臨界速度上行時(shí),速度由小到大,因無外界擾動(dòng),故達(dá)到紊流的上臨界速度較大。但實(shí)際流動(dòng)難免有擾動(dòng),故vc'

無實(shí)際意義。實(shí)際以vc作為判斷的標(biāo)準(zhǔn)。v<vc時(shí)達(dá)到層流872下行,即速度由大到小vc——下臨界速度v<vc時(shí)二能量損失總流的伯努里方程lgvlghfABDCvcvc’n=1.75~2.0n=1.0E對(duì)數(shù)坐標(biāo),范圍較大上行時(shí),由B點(diǎn)開始轉(zhuǎn)化為湍流;下行時(shí),沿BCA變化,在A點(diǎn)達(dá)到層流。層流時(shí),hf

隨v1.0變化湍流時(shí),hf

隨vn

變化,n

=1.75~2.0。88二能量損失總流的伯努里方程lgvlghfABDCvcv三雷諾數(shù)依靠臨界速度判別流動(dòng)狀態(tài)不方便。又因?yàn)榕R界速度隨密度、粘性及流道尺寸發(fā)生變化。故由實(shí)驗(yàn)歸納出了一個(gè)無量綱參數(shù)用于判別流動(dòng)狀態(tài)。反映慣性力與粘性力之比粘性力使流動(dòng)穩(wěn)定;慣性力使流動(dòng)不穩(wěn)定故,Re越大,流動(dòng)將趨于紊流。與臨界速度vc對(duì)應(yīng)的Re稱為臨界Re。用Rec表示。即區(qū)域劃分:Re<2000,為層流;2000<Re<4000,為過渡流;Re>4000,為湍流。

為簡(jiǎn)便起見,不考慮過渡流89三雷諾數(shù)依靠臨界速度判別流動(dòng)狀態(tài)不方便。又因?yàn)榕R界速度隨第三節(jié)圓管內(nèi)層流流動(dòng)層流流動(dòng)具有較強(qiáng)的規(guī)律性,根據(jù)受力分析,可從理論上導(dǎo)出沿程阻力系數(shù)λ的計(jì)算公式一等截面管道內(nèi)粘性流動(dòng)沿程水頭損失對(duì)截面1-1和2-2列伯努里方程由均勻流動(dòng)的性質(zhì)p1Ap2Aτ0l12α90第三節(jié)圓管內(nèi)層流流動(dòng)層流流動(dòng)具有較強(qiáng)的規(guī)律性,根據(jù)受力分對(duì)1-1和2-2之間的控制體進(jìn)行,受到的力有:p1、p2、重力、壁面切應(yīng)力τ0由受力平衡:管長(zhǎng)圓管半徑p1Ap2Aτ0l12α兩邊同時(shí)除以,并利用A=πr02得91對(duì)1-1和2-2之間的控制體進(jìn)行,受到的力有:p1、p2、重表明,沿程阻力損失主要是因?yàn)槟Σ磷枇Φ淖饔?2表明,沿程阻力損失主要是因?yàn)槟Σ磷枇Φ淖饔?4二圓管內(nèi)切應(yīng)力分布對(duì)于任意半徑處表明:在圓管斷面上,切應(yīng)力呈直線分布,r=0處,;處,,達(dá)最大。93二圓管內(nèi)切應(yīng)力分布對(duì)于任意半徑處表明:在圓管斷面上,切三沿程阻力系數(shù)的計(jì)算由牛頓內(nèi)摩擦定律:加負(fù)號(hào),表示u隨r的增大而減小由有則積分得:將,u=0代入得,94三沿程阻力系數(shù)的計(jì)算由牛頓內(nèi)摩擦定律:加負(fù)號(hào),表示u隨故是以管中心線為軸的旋轉(zhuǎn)拋物面。r=0時(shí),即在管軸處,速度達(dá)最大值:

由平均流速定義式得所以,

95故是以管中心線為軸的旋轉(zhuǎn)拋物面。r=0時(shí),即在管軸處,速度從而有比較得適用條件:層流Re<2000。

96從而有比較得適用條件:層流Re<2000。18四層流流動(dòng)入口段長(zhǎng)度進(jìn)入斷面速度均勻,由于受到壁面的影響,壁面附近速度降低,中間速度增加,并趨向于拋物線發(fā)展,最終形成拋物線。理論上需無限長(zhǎng)的距離才能達(dá)到完全拋物線。實(shí)際中,定義中心點(diǎn)速度達(dá)到理論最大速度的99%時(shí)的管道長(zhǎng)度為入口段長(zhǎng)度?;?qū)τ谂R界Re=2000時(shí),97四層流流動(dòng)入口段長(zhǎng)度進(jìn)入斷面速度均勻,由于受到壁面的影例1一水平輸油管,AB段長(zhǎng)l=500m,測(cè)得pA=3atm,pB=2atm。通過的流量qv=0.016m3/s,ν=171×10-6m2/s,ρ=890kg/m3。求管徑。解:計(jì)算沿程損失:

因油管水平放置,故m(油柱)假設(shè)管內(nèi)為層流流動(dòng),98例1一水平輸油管,AB段長(zhǎng)l=500m,測(cè)得pA=3atm將,代入得整理得

解得d=0.15m驗(yàn)算:

為層流,結(jié)果正確。99將,代入得整理得解得d=0.15m驗(yàn)算:為層流例2圖示一測(cè)定流體粘性的裝置。管長(zhǎng)l=2m,d=6mm。水銀差壓計(jì)的讀數(shù)為h=120mm,流量qv=7.3cm3/s。液體密度ρ=900kg/m3。求μ。解:由水銀差壓計(jì)得阻力損失為qvdhl管內(nèi)流速

100例2圖示一測(cè)定流體粘性的裝置。管長(zhǎng)l=2m,d=6mm。水假設(shè)管內(nèi)為層流流動(dòng),,則驗(yàn)算,,正確總結(jié):計(jì)算阻力損失問題比較簡(jiǎn)單。若計(jì)算其它量如流量或管道尺寸,則阻力損失已知,此時(shí)要先假定流態(tài),獲得阻力計(jì)算公式,與其它量聯(lián)系起來,然后進(jìn)行驗(yàn)算。101假設(shè)管內(nèi)為層流流動(dòng),,則驗(yàn)算,,正確總結(jié):計(jì)算阻力損失問第四節(jié)圓管內(nèi)湍流流動(dòng)一湍流流動(dòng)的時(shí)均值與脈動(dòng)值某點(diǎn)的速度不是固定的常數(shù),而是隨著時(shí)間脈動(dòng)。在某一時(shí)間段內(nèi)速度為一常數(shù)。對(duì)于一個(gè)恒定流動(dòng),在一定時(shí)間段內(nèi),某點(diǎn)速度的時(shí)間平均值為一常數(shù)。因此,如果在時(shí)間T內(nèi)求該點(diǎn)的平均值,則稱為時(shí)均速度。時(shí)均速度102第四節(jié)圓管內(nèi)湍流流動(dòng)一湍流流動(dòng)的時(shí)均值與脈動(dòng)值x方向湍流瞬時(shí)速度為時(shí)均速度與脈動(dòng)速度之和,即因此對(duì)于瞬時(shí)壓力p,時(shí)均壓力和脈動(dòng)壓力103x方向湍流瞬時(shí)速度為時(shí)均速度與脈動(dòng)速度之和,即因此對(duì)于瞬湍流強(qiáng)度(簡(jiǎn)稱湍流度),表示紊流脈動(dòng)的強(qiáng)弱程度,定義為:區(qū)分

時(shí)均速度:空間某點(diǎn)流態(tài)瞬時(shí)速度對(duì)時(shí)間的平均值。平均速度:某一有效截面上各點(diǎn)流態(tài)瞬時(shí)速度對(duì)截面積的平均值。脈動(dòng)速度:瞬時(shí)速度與時(shí)均速度之差。104湍流強(qiáng)度(簡(jiǎn)稱湍流度),表示紊流脈動(dòng)的強(qiáng)弱程度,定義為:區(qū)分二湍流切應(yīng)力與混合長(zhǎng)度理論由于脈動(dòng),流層間有動(dòng)量交換,使兩層流體受到附加的切應(yīng)力的作用,稱為附加切應(yīng)力。理解:流層間的動(dòng)量交換減緩了流層的相對(duì)運(yùn)動(dòng)速率,相當(dāng)于受到附加切應(yīng)力。湍流附加切應(yīng)力由脈動(dòng)速度引起:與符號(hào)相反,故加負(fù)號(hào)。理解:105二湍流切應(yīng)力與混合長(zhǎng)度理論由于脈動(dòng),流層間有動(dòng)量交換,因流層相對(duì)運(yùn)動(dòng)產(chǎn)生的粘性切應(yīng)力湍流總切應(yīng)力脈動(dòng)速度的計(jì)算方法?混合長(zhǎng)度理論假定1:在脈動(dòng)過程中,存在著一個(gè)與分子平均自由路程相當(dāng)?shù)木嚯xl'。微團(tuán)只有在經(jīng)過這段距離后,才與周圍流體相混合,動(dòng)量才會(huì)變化。相距l(xiāng)'的兩層流體的時(shí)均速度差為:表示成時(shí)均速度的函數(shù)106因流層相對(duì)運(yùn)動(dòng)產(chǎn)生的粘性切應(yīng)力湍流總切應(yīng)力脈動(dòng)速度的計(jì)算假定2:脈動(dòng)速度絕對(duì)值的時(shí)均值與時(shí)均流速差成正比認(rèn)為:與成比例,則c1、c2為常數(shù)l

——混合長(zhǎng)度107假定2:脈動(dòng)速度絕對(duì)值的時(shí)均值與時(shí)均流速差成正比認(rèn)為:表明:時(shí)均速度越大,湍動(dòng)越劇烈,湍流切應(yīng)力的影響越大,τl的影響越小?;旌祥L(zhǎng)度理論將湍流計(jì)算的問題轉(zhuǎn)化為混合長(zhǎng)度的確定上。對(duì)于圓管內(nèi)流動(dòng),取l=Ky,K=0.4對(duì)圓管內(nèi)充分發(fā)展流動(dòng):y是離壁面的距離;r0是圓管半徑。Re=1.1×105~3.2×106

108表明:時(shí)均速度越大,湍動(dòng)越劇烈,湍流切應(yīng)力的影響越大,τl第五節(jié)湍流流動(dòng)沿程阻力計(jì)算一沿程阻力系數(shù)及其影響因素的分析層流:湍流:(1)由層流過渡,沿程阻力系數(shù)仍受Re的影響;(2)湍流時(shí),粗糙度會(huì)產(chǎn)生流動(dòng)阻力;粗糙度影響脈動(dòng)速度,脈動(dòng)速度影響流動(dòng)過程——沿程阻力沿程阻力系數(shù)僅與Re有關(guān)影響沿程阻力系數(shù)的因素:Re和壁面粗糙e。109第五節(jié)湍流流動(dòng)沿程阻力計(jì)算一沿程阻力系數(shù)及其影響因素的尼古拉茲實(shí)驗(yàn):不同粗糙度、不同Re時(shí)的沿程阻力系數(shù)。絕對(duì)粗糙度/粗糙突起的高度:e相對(duì)粗糙度:e/d實(shí)際工業(yè)管道粗糙度分布不均勻。尼古拉茲粗糙:在光滑管道內(nèi)壁粘附直徑基本相同的砂粒,砂粒的直徑即為管道的絕對(duì)粗糙度。110尼古拉茲實(shí)驗(yàn):不同粗糙度、不同Re時(shí)的沿程阻力系數(shù)。絕對(duì)粗糙二粘性底層粘性底層:緊靠壁面存在有一個(gè)粘性切應(yīng)力起主導(dǎo)作用的薄層。由于粘性底層受到臨近的湍流的影響,不是真正的層流底層。其厚度為δv

湍流核心:離邊壁不遠(yuǎn)到管中心絕大部分區(qū)域速度分布較均勻,處于湍流運(yùn)動(dòng)狀態(tài),湍流切應(yīng)力起主導(dǎo)作用,這一區(qū)域稱為湍流核心。過渡層:湍流核心和粘性底層之間存在一個(gè)范圍很小的過渡層。通??刹豢紤]。111二粘性底層粘性底層:緊靠壁面存在有一個(gè)粘性切應(yīng)力起主導(dǎo)作用光滑管道粘性底層的厚度:表明:速度,或,根據(jù)粘性底層的厚度與粗糙度的相對(duì)大小,將湍流分為三個(gè)阻力區(qū):(1)水力光滑區(qū):粘性底層的厚度δv大于粗糙突起的高度e,即δv

>e,λ僅與Re有關(guān),而與e/d無關(guān);(2)湍流過渡區(qū):粘性底層的厚度δv

變薄,接近粗糙突起的高度e,λ與Re和e/d有關(guān);(3)完全湍流區(qū)(充分粗糙):粗糙突起幾乎全部暴露在湍流核心區(qū),λ僅與e/d有關(guān);112光滑管道粘性底層的厚度:表明:速度,或eee水力光滑區(qū)過渡區(qū)粗糙區(qū)湍流粗糙區(qū)λ僅與e/d有關(guān)

據(jù)hf與v2成正比,因此充分粗糙區(qū)又稱阻力平方區(qū)113eee水力光滑區(qū)過渡區(qū)粗糙區(qū)湍流粗糙區(qū)λ僅與e/d有關(guān)據(jù)三沿程阻力系數(shù)的計(jì)算1當(dāng)量粗糙度尼古拉茲的人工粗糙管內(nèi)壁各處粗糙度大致相等。但工業(yè)管道粗糙高度、形狀和分布都無規(guī)律,故引入當(dāng)量粗糙度。

將工業(yè)管道與尼古拉茲的人工粗糙管在完全湍流下等直徑進(jìn)行實(shí)驗(yàn),若實(shí)驗(yàn)測(cè)得的λ相等,則工業(yè)管道的粗糙度就與人工管道的粗糙度相等,此時(shí)用人工管道的粗糙度表示工業(yè)管道的粗糙度,即為當(dāng)量粗糙度。對(duì)于不同的工業(yè)管道,已由實(shí)驗(yàn)測(cè)得了其當(dāng)量粗糙度,并制成表供使用查找。114三沿程阻力系數(shù)的計(jì)算1當(dāng)量粗糙度尼古拉茲的人工粗糙管內(nèi)2阻力系數(shù)計(jì)算1水力光滑Re<105時(shí)七一定律與e無關(guān)1152阻力系數(shù)計(jì)算1水力光滑Re<105時(shí)七一定律與2湍流粗糙區(qū)僅與e有關(guān)3過渡區(qū)該公式實(shí)際上是兩個(gè)公式的疊加。計(jì)算時(shí)要利用迭代。下面一個(gè)公式計(jì)算時(shí)比較簡(jiǎn)單,且誤差不大(5-39)阻力平方區(qū)1162湍流粗糙區(qū)僅與e有關(guān)3過渡區(qū)該公式實(shí)際上是兩個(gè)3莫迪圖由公式繪制。通過Re

和e/d查λ莫迪圖的優(yōu)點(diǎn)是使用方便;缺點(diǎn)是精度較低,不同的使用人員得到的結(jié)果也不同。圖說明:分成五個(gè)區(qū),采用對(duì)數(shù)坐標(biāo),縱坐標(biāo)左邊為右邊為e/d,數(shù)值對(duì)應(yīng)曲線。1層流區(qū):可直接由公式計(jì)算2臨界區(qū):值不確定,很少采用3水力光滑區(qū)4湍流過渡區(qū)5湍流粗糙區(qū)1173莫迪圖由公式繪制。通過Re和e/d查λ莫迪圖的優(yōu)0.050.040.030.020.0150.010.0080.0060.0040.0020.0010.00080.00060.00040.00020.00010.000,050.000,010.10.090.080.070.060.050.040.030.0250.020.0150.010.0090.008層流區(qū)臨界區(qū)過渡區(qū)紊流粗糙區(qū)光滑管區(qū)103104105238654234568234568234568234568106107108delRe000001.0=dK000005.0=dKRe=1.5×105,e/d=0.0031180.050.040.030.020.0150.010.008例3已知通道d=200mm,l=300m,e=0.4mm,qv=1000m3/h,ν=2.5×10-6m2/s,求單位重量流體的沿程損失。

解:平均流速為根據(jù)和e/d=0.4/200=0.002查莫迪圖得則119例3已知通道d=200mm,l=300m,e=0.4mm,或由公式計(jì)算:解得:若用公式(5-38),則要用迭代的方法120或由公式計(jì)算:解得:若用公式(5-38),則要用迭代的方法例4已知某管內(nèi)油的體積流量qv=1000m3/h,ν

=1.0×10-5m2/s,管長(zhǎng)l=200m,e=0.046mm。允許的最大沿程損失hf=20m。試確定管道直徑d。解:平均流速,則由得(1)(2)121例4已知某管內(nèi)油的體積流量qv=1000m3/h,ν=1試取代入(1)得,d=0.264m,再代入(2)式得Re=134000。e/d=0.046×10-3/0.264=0.00017。由此查莫迪圖得

以查得的λ

值作為改進(jìn)值,重復(fù)上述計(jì)算,得d=0.253m,Re=140000,e/d=0.000182,由莫迪圖查得以作為改進(jìn)值,重復(fù)計(jì)算,得d=0.252m,與上次計(jì)算相同,故計(jì)算結(jié)束Re=140500,e/d=0.000183,由莫迪圖查得所以,管徑d=0.252m=252mm。122試取代入(1)得,d=0.264m,再代入(2)式得Re=若為非圓管沿程損失例5-12123若為非圓管沿程損失例5-1245第六節(jié)局部阻力損失斷面變化,彎管,閥門等都會(huì)引起局部阻力損失。阻力應(yīng)與Re有關(guān),但由于局部影響使流動(dòng)較早進(jìn)入阻力平方區(qū),此時(shí)可認(rèn)為λ與Re無關(guān),只決定于形狀。針對(duì)不同形狀的局部特征,介紹局部阻力系數(shù)。要求:會(huì)查表應(yīng)用。造成局部損失的原因是湍流和旋渦運(yùn)動(dòng),消耗能量。124第六節(jié)局部阻力損失斷面變化,彎管,閥門等都會(huì)引起局部阻力一管道進(jìn)口處損失局部阻力系數(shù)與入口形狀有關(guān),對(duì)不同情況可查閱數(shù)據(jù)。α直角(銳角)進(jìn)口:0.5圓角進(jìn)口,圓管:0.1方管:0.2喇叭形:0.01~0.05深入形:1.0切角進(jìn)口:0.25斜角進(jìn)口:銳角圓角喇叭形切角深入斜角125一管道進(jìn)口處損失局部阻力系數(shù)與入口形狀有關(guān),對(duì)不同情況可二突然擴(kuò)大損失(可由理論推導(dǎo)得出)p'p112設(shè)流體不可壓縮,由連續(xù)性方程得由動(dòng)量方程實(shí)驗(yàn)證明:故126二突然擴(kuò)大損失(可由理論推導(dǎo)得出)p'p112設(shè)流體不可列1、2斷面的伯努里方程:p’p112又由得,代入上式得則——此時(shí)以v1為基準(zhǔn)127列1、2斷面的伯努里方程:p’p112又由得,代入上式得同理,以v2為基準(zhǔn)時(shí),有

p’p112——以v2為基準(zhǔn)三突然收縮損失A1A2若A1無窮大,即對(duì)于大容器,有此時(shí),就相當(dāng)于直角進(jìn)口。128同理,以v2為基準(zhǔn)時(shí),有p’p112——以v2為基準(zhǔn)三四漸擴(kuò)管和減縮管代替突然擴(kuò)大與突然收縮,可減低能量損失。v1v2d2d1v1v2d2d1θθ

即以出口速度為基準(zhǔn)129四漸擴(kuò)管和減縮管代替突然擴(kuò)大與突然收縮,可減低能量損失。五彎管彎曲圓管內(nèi)形成二次流:與主流方向正交的流動(dòng)。由于離心力的作用,彎管外測(cè)壓力高于內(nèi)側(cè)。為減小突然彎曲管能量損失,可用導(dǎo)流葉片。如對(duì)于90°的直角彎管,有導(dǎo)流葉片時(shí),無導(dǎo)流葉片時(shí),

130五彎管彎曲圓管內(nèi)形成二次流:與主流方向正交的流動(dòng)。由于離六附件如閥門,不同角度的彎頭列出表格,供查找。表5.5還有很多類型,分布于不同的參考資料,可搜集整理。一般習(xí)題中會(huì)給出。為減小能量損失,要設(shè)計(jì)一些減阻方案,以達(dá)到減小阻力,節(jié)約能源的目的。減小流動(dòng)阻力——節(jié)能131六附件53第七節(jié)管路流動(dòng)計(jì)算工業(yè)設(shè)計(jì)目的:設(shè)計(jì)管路系統(tǒng),盡量減少動(dòng)力消耗,節(jié)約能源和原材料。方法:利用連續(xù)性方程,伯努里方程,能量方程。計(jì)算量:流量,管道尺寸,阻力(損失)分類:①上述三個(gè)量中,已知其中兩個(gè),求另外一個(gè)。②按損失類別分類:長(zhǎng)管:水頭損失以沿程損失為主,局部損失很小;短管:沿程損失與局部損失所占比重相當(dāng)。③按管路系統(tǒng)的布置形式:簡(jiǎn)單管路;復(fù)雜管路:串聯(lián)管路、并聯(lián)管路、分支管路、均勻泄流、管網(wǎng)132第七節(jié)管路流動(dòng)計(jì)算工業(yè)設(shè)計(jì)54一簡(jiǎn)單管路管徑和粗糙度均相同的一根管子或由這樣的數(shù)根管段串聯(lián)在一起組成的管路系統(tǒng),稱為簡(jiǎn)單管路。例5.11——寫出伯努里方程,再進(jìn)行簡(jiǎn)化,虹吸管中壓力最低的點(diǎn)為最高點(diǎn)局部損失后例5.12——水力直徑的應(yīng)用,即非圓管133一簡(jiǎn)單管路例5.11——寫出伯努里方程,再進(jìn)行簡(jiǎn)化,虹吸管二管路中有泵或風(fēng)機(jī)的計(jì)算揚(yáng)程:?jiǎn)挝恢亓苛黧w從泵或風(fēng)機(jī)進(jìn)口截面1到出口截面2所獲得的機(jī)械能。符號(hào):hp,單位:m。對(duì)于風(fēng)機(jī),用壓力表示,pp,單位:Pa111'1'2'2'22根據(jù)揚(yáng)程的定義,它是流體能量的增量,因此代入伯努利方程時(shí),在方程的左邊;而對(duì)于水輪機(jī),由于要消耗利用流體的能量,故放在方程的右邊。134二管路中有泵或風(fēng)機(jī)的計(jì)算揚(yáng)程:?jiǎn)挝恢亓苛黧w從泵或風(fēng)機(jī)進(jìn)口例5如圖示,水輪機(jī)從水流獲得功率P=37.3kw。水管直徑d=0.305m,長(zhǎng)l=91.4m,λ=0.02。局部能量損失忽略。求通過水管的水流量。z2=021z1=27.4mλ=0.02v水輪機(jī)解:對(duì)1和2列伯努里方程得ht表示水輪機(jī)從水中獲得的能量。

式中,z1=27.4m,z2=0,p1=p2=pa,v1=0,v2=v135例5如圖示,水輪機(jī)從水流獲得功率P=37.3kw。水管直沿程損失:由水輪機(jī)的功率:得(根據(jù):)水輪機(jī)的工作水頭為:136沿程損失:由水輪機(jī)的功率:得(根據(jù):

于是得解得:v=7.58m/s或v=2.01m/s故體積流量為:或137于是得解得:v=7.58m/s或v=2.01三串聯(lián)管路qv1

qv2

串聯(lián)管路的特點(diǎn):

(1)各管路的流量相等,即qV1=qV2=qV3(質(zhì)量守恒)(2)總損失為各管路損失之和,即hl

=hl1+hl2+hl3

并聯(lián)電路的特點(diǎn)138三串聯(lián)管路qv1qv2串聯(lián)管路的特點(diǎn):

(1例6:兩水箱水面高度差Δz=6m,串聯(lián)管路l1=300mm,d1=0.6m,e1=0.0015m,l2=240m,d2=0.9m,e2=0.0003m。水的運(yùn)動(dòng)粘度ν

=1×10-6m2/s。求通過該管道的流量。21ABΔzζ1ζ2ζ3解:對(duì)A、B面寫出伯努里方程式中,pA=pB=0,vA=vB=0,故139例6:兩水箱水面高度差Δz=6m,串聯(lián)管路l1=300mm,21ABΔZζ1ζ2ζ3串聯(lián)管路水頭損失可計(jì)算如下ζ1、ζ2、ζ3分別為串聯(lián)管道進(jìn)口、截面突然擴(kuò)大和出口的局部阻力系數(shù)ζ1=0.5ζ3=1由連續(xù)性方程得14021ABΔZζ1ζ2ζ3串聯(lián)管路水頭損失可計(jì)算如下ζ1、ζ綜合上述方程得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論