河北省衡水市安平中學2022年數(shù)學高一上期末質量檢測模擬試題含解析_第1頁
河北省衡水市安平中學2022年數(shù)學高一上期末質量檢測模擬試題含解析_第2頁
河北省衡水市安平中學2022年數(shù)學高一上期末質量檢測模擬試題含解析_第3頁
河北省衡水市安平中學2022年數(shù)學高一上期末質量檢測模擬試題含解析_第4頁
河北省衡水市安平中學2022年數(shù)學高一上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義在上的偶函數(shù)滿足當時,,則A. B.C. D.2.已知集合,,若,則實數(shù)的值為()A. B.C. D.3.若角與終邊相同,則一定有()A. B.C., D.,4.已知且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知向量,,,則A. B.C. D.7.已知函數(shù)(其中)的圖象如下圖所示,則的圖象是()A. B.C. D.8.函數(shù)fx=lgA.0 B.1C.2 D.39.函數(shù)的單調遞增區(qū)間是()A. B.C. D.10.已知,若角的終邊經(jīng)過點,則的值為()A. B.C.4 D.-4二、填空題:本大題共6小題,每小題5分,共30分。11.莖葉圖表示的是甲,乙兩人在5次綜合測評中的成績,記甲,乙的平均成績分別為a,b,則a,b的大小關系是______12.全集,集合,則______13.已知函數(shù)f(x)=1g(2x-1)的定義城為______14.計算:__________.15.冪函數(shù)的圖像經(jīng)過點,則的值為____16.已知集合,則集合的子集個數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合,或(1)若,求a取值范圍;(2)若,求a的取值范圍18.在三棱錐中,和是邊長為等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.19.設全集為,集合,(1)分別求,;(2)已知,若,求實數(shù)的取值范圍構成的集合20.某農戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設,分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農戶應該選擇哪一種方案,并說明理由.21.已知平面上點,且.(1)求;(2)若點,用基底表示.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】分析:先根據(jù)得周期為2,由時單調性得單調性,再根據(jù)偶函數(shù)得單調性,最后根據(jù)單調性判斷選項正誤.詳解:因為,所以周期為2,因為當時,單調遞增,所以單調遞增,因為,所以單調遞減,因為,,所以,,,,選B.點睛:利用函數(shù)性質比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的奇偶性轉化為單調區(qū)間上函數(shù)值,最后根據(jù)單調性比較大小,要注意轉化在定義域內進行.2、B【解析】根據(jù)集合,,可得,從而可得.【詳解】因為,,所以,所以.故選:B3、C【解析】根據(jù)終邊相同角的表示方法判斷【詳解】角與終邊相同,則,,只有C選項滿足,故選:C4、D【解析】根據(jù)充分、必要條件的知識確定正確選項.【詳解】“”時,若,則,不能得到“”.“”時,若,則,不能得到“”.所以“”是“”的既不充分也不必要條件.故選:D5、A【解析】首先求解二次不等式,然后結合不等式的解集即可確定充分性和必要性是否成立即可.【詳解】求解二次不等式可得:或,據(jù)此可知:是的充分不必要條件.故選:A.【點睛】本題主要考查二次不等式的解法,充分性和必要性的判定,屬于基礎題.6、D【解析】A項:利用向量的坐標運算以及向量共線的等價條件即可判斷.B項:利用向量模的公式即可判斷.C項:利用向量的坐標運算求出數(shù)量積即可比較大小.D項:利用向量加法的坐標運算即可判斷.【詳解】A選項:因為,,所以與不共線.B選項:,,顯然,不正確.C選項:因為,所以,不正確;D選項:因為,所以,正確;答案為D.【點睛】主要考查向量加、減、數(shù)乘、數(shù)量積的坐標運算,還有向量模的公式以及向量共線的等價條件的運用.屬于基礎題.7、A【解析】根據(jù)二次函數(shù)圖象上特殊點的正負性,結合指數(shù)型函數(shù)的性質進行判斷即可.【詳解】解:由圖象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函數(shù)是減函數(shù),,所以選項A符合,故選:A8、C【解析】在同一個坐標系下作出兩個函數(shù)的圖象即得解.【詳解】解:在同一個坐標系下作出兩個函數(shù)的圖象如圖所示,則交點個數(shù)為為2.故選:C9、B【解析】先求出函數(shù)的定義域,然后將復合函數(shù)分解為內、外函數(shù),分別討論內外函數(shù)的單調性,進而根據(jù)復合函數(shù)單調性“同增異減”的原則,得到函數(shù)y=log3(x2-2x)的單調遞增區(qū)間【詳解】函數(shù)y=log5(x2-2x)的定義域為(-∞,0)∪(2,+∞),令t=x2-2x,則y=log5t,∵y=log5t為增函數(shù),t=x2-2x在(-∞,0)上為減函數(shù),在(2,+∞)為增函數(shù),∴函數(shù)y=log5(x2-2x)的單調遞增區(qū)間為(2,+∞),故選B【點睛】本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調性,其中復合函數(shù)單調性“同增異減”是解答本題的關鍵10、A【解析】先通過終邊上點的坐標求出,然后代入分段函數(shù)中求值即可.【詳解】解:因為角的終邊經(jīng)過點所以所以所以故選A.【點睛】本題考查了任意角三角函數(shù)的定義,分段函數(shù)的計算求值,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分別計算出甲,乙的平均分,從而可比較a,b的大小關系.【詳解】易知甲的平均分為,乙的平均分為,所以.故答案為:.12、【解析】直接利用補集的定義求解【詳解】因為全集,集合,所以,故答案為:13、【解析】根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,求出解集即可.【詳解】∵f(x)=lg(2x﹣1),根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,解得:x>0,故答案為(0,+∞).【點睛】考查具體函數(shù)的定義域的求解,考查了指數(shù)不等式的解法,屬于基礎題14、4【解析】故答案為415、2【解析】因為冪函數(shù),因此可知f()=216、2【解析】先求出然后直接寫出子集即可.【詳解】,,所以集合的子集有,.子集個數(shù)有2個.故答案為:2.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)交集的定義,列出關于的不等式組即可求解;(2)由題意,,根據(jù)集合的包含關系列出關于的不等式組即可求解;【小問1詳解】解:∵或,且,∴,解得,∴a的取值范圍為;【小問2詳解】解:∵或,且,∴,∴或,即或,∴a的取值范圍是.18、(1)見解析(2)見解析(3).【解析】由三角形中位線定理,得出,結合線面平行的判定定理,可得平面PAC;等腰和等腰中,證出,而,由勾股定理的逆定理,得,結合,可得平面ABC;由易知PO是三棱錐的高,算出等腰的面積,再結合錐體體積公式,可得三棱錐的體積【詳解】,D分別為AB,PB的中點,又平面PAC,平面PAC平面如圖,連接OC,O為AB中點,,,且同理,,又,,得、平面ABC,,平面平面ABC,D為PB的中點,結合,得棱錐的高為,體積為【點睛】本題給出特殊三棱錐,求證線面平行、線面垂直并求錐體體積,考查了線面平行、線面垂直的判定與性質和錐體體積公式等知識,屬于中檔題19、(1),或或;(2)【解析】(1)解一元二次不等式求得集合,由交集、并集和補集的概念計算可得結果;(2)根據(jù)集合的包含關系可構造不等式組求得結果.【詳解】(1),則或,,或或;(2),,,解得:,則實數(shù)的取值范圍構成的集合為.20、(1),;,.(2)農戶應該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質結合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當時,,所以矩形的面積,;對于方案丙,當時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設,則,所以三角形的面積為,當且僅當時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論