版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.下列四個函數(shù)中,以π為最小正周期,且在區(qū)間上單調(diào)遞減的是()A. B.C. D.2.函數(shù)的圖像的大致形狀是()A. B.C. D.3.我們知道,函數(shù)的圖象關(guān)于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),則函數(shù)圖象的對稱中心為()A. B.C. D.4.設(shè),則a,b,c的大小關(guān)系是A. B.C. D.5.定義域為R的函數(shù),若關(guān)于的方程恰有5個不同的實數(shù)解,則=A.0 B.C. D.16.已知定義域為R的函數(shù)在單調(diào)遞增,且為偶函數(shù),若,則不等式的解集為()A. B.C. D.7.已知函數(shù),則不等式的解集為()A. B.C. D.8.已知點落在角的終邊上,且∈[0,2π),則的值為()A B.C. D.9.已知點在第二象限,則角的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.圓與圓的位置關(guān)系是A.相離 B.外切C.相交 D.內(nèi)切二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知是定義在上的偶函數(shù),并滿足:,當,,則___________.12.如圖,扇形的周長是6,該扇形的圓心角是1弧度,則該扇形的面積為______.13.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.14.若向量,,且,則_____15.已知函數(shù),將函數(shù)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位,得到函數(shù)的解析式______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.王先生發(fā)現(xiàn)他的幾位朋友從事電子產(chǎn)品的配件批發(fā),生意相當火爆.因此,王先生將自己的工廠轉(zhuǎn)型生產(chǎn)小型電子產(chǎn)品的配件.經(jīng)過市場調(diào)研,生產(chǎn)小型電子產(chǎn)品的配件.需投入固定成本為2萬元,每生產(chǎn)萬件,還需另投入萬元,在年產(chǎn)量不足8萬件時,(萬元);在年產(chǎn)量不低于8萬件時,(萬元).每件產(chǎn)品售價為4元.通過市場分析,王先生生產(chǎn)的電子產(chǎn)品的配件都能在當年全部售完.(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(2)求年產(chǎn)量為多少萬件時,王先生在電子產(chǎn)品的配件的生產(chǎn)中所獲得的年利潤最大?并求出年利潤的最大值?17.已知,(1)若,求(2)若,求實數(shù)的取值范圍.18.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)區(qū)間;(3)在給定的坐標系中作出函數(shù)的簡圖,并直接寫出函數(shù)在區(qū)間上的取值范圍.19.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱函數(shù)為“局部中心函數(shù)”.(1)已知二次函數(shù),試判斷是否為“局部中心函數(shù)”.并說明理由;(2)若是定義域為R上的“局部中心函數(shù)”,求實數(shù)m的取值范圍.20.已知,是夾角為的兩個單位向量,且向量,求:,,;向量與夾角的余弦值21.已知函數(shù).(1)判斷在區(qū)間上的單調(diào)性,并用定義證明;(2)判斷的奇偶性,并求在區(qū)間上的值域.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】先判斷各函數(shù)最小正周期,再確定各函數(shù)在區(qū)間上單調(diào)性,即可選擇判斷【詳解】對于A,最小正周期為2π,在區(qū)間上單調(diào)遞減,不合題意;對于B,最小正周期為π,在區(qū)間上單調(diào)遞減,符合題意;對于C,最小正周期為2π,在區(qū)間上單調(diào)遞減,不合題意;對于D,最小正周期為π,在區(qū)間上單調(diào)遞增,不合題意;故選:B.2、D【解析】化簡函數(shù)解析式,利用指數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,即可得出答案.【詳解】根據(jù),是減函數(shù),是增函數(shù).在上單調(diào)遞減,在上單調(diào)遞增故選:D.【點睛】本題主要考查了根據(jù)函數(shù)表達式求函數(shù)圖象,解題關(guān)鍵是掌握指數(shù)函數(shù)圖象的特征,考查了分析能力和計算能力,屬于中檔題.3、A【解析】根據(jù)題意并結(jié)合奇函數(shù)的性質(zhì)即可求解.【詳解】由題意得,設(shè)函數(shù)圖象的對稱中心為,則函數(shù)為奇函數(shù),即,則,解得,故函數(shù)圖象的對稱中心為.故選:.4、D【解析】運用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性,利用中間值法進行比較即可.【詳解】,因此可得.故選:D【點睛】本題考查了對數(shù)式、指數(shù)式之間的大小比較問題,考查了對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性,考查了中間值比較法,屬于基礎(chǔ)題.5、C【解析】本題考查學生的推理能力、數(shù)形結(jié)合思想、函數(shù)方程思想、分類討論等知識如圖,由函數(shù)的圖象可知,若關(guān)于的方程恰有5個不同的實數(shù)解,當時,方程只有一根為2;當時,方程有兩不等實根(),從而方程,共有四個根,且這四個根關(guān)于直線對稱分布,故其和為8.從而,,選C【點評】本題需要學生具備扎實的基本功,難度較大6、D【解析】根據(jù)題意,由函數(shù)為偶函數(shù)分析可得函數(shù)的圖象關(guān)于直線對稱,結(jié)合函數(shù)的單調(diào)性以及特殊值分析可得,解可得的取值范圍,即可得答案【詳解】解:根據(jù)題意,函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對稱,又由函數(shù)在,單調(diào)遞增且f(3),則,解可得:,即不等式的解集為;故選:D7、D【解析】由題可得函數(shù)為偶函數(shù),且在上為增函數(shù),可得,然后利用余弦函數(shù)的性質(zhì)即得.【詳解】∵函數(shù),定義域為R,∴,∴函數(shù)為偶函數(shù),且在上為增函數(shù),,∵,∴,即,又,∴.故選:D.8、D【解析】由點的坐標可知是第四象限的角,再由可得的值【詳解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故選:D【點睛】此題考查同角三角函數(shù)的關(guān)系,考查三角函數(shù)的定義,屬于基礎(chǔ)題9、C【解析】利用任意角的三角函數(shù)的定義,三角函數(shù)在各個象限中的負號,求得角α所在的象限【詳解】解:∵點P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α頂點為坐標原點,始邊為x軸的非負半軸,則α的終邊落在第三象限,故選:C10、D【解析】圓的圓心,半徑圓的圓心,半徑∴∴∴兩圓內(nèi)切故選D點睛:判斷圓與圓的位置關(guān)系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關(guān)系(2)切線法:根據(jù)公切線條數(shù)確定二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、5【解析】根據(jù)可得周期,再結(jié)合偶函數(shù),可將中的轉(zhuǎn)化到內(nèi),可得的值.【詳解】因為,所以,所以,即函數(shù)的一個周期為4,所以,又因為是定義在上的偶函數(shù),所以,因當,,所以,所以.故答案為:2.5.12、2【解析】由扇形周長求得半徑同,弧長,再由面積公式得結(jié)論【詳解】設(shè)半徑為,則,,所以弧長為,面積為故答案為:213、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎(chǔ)知識是關(guān)鍵.14、6【解析】本題首先可通過題意得出向量以及向量的坐標表示和向量與向量之間的關(guān)系,然后通過向量平行的相關(guān)性質(zhì)即可得出結(jié)果?!驹斀狻恳驗?,,且,所以,解得。【點睛】本題考查向量的相關(guān)性質(zhì),主要考查向量平行的相關(guān)性質(zhì),若向量,,,則有,鍛煉了學生對于向量公式的使用,是簡單題。15、【解析】根據(jù)三角函數(shù)圖象的變換可得答案.【詳解】將函數(shù)圖象上各點的橫坐標縮短到原來的倍,得,再將得到的圖象向右平移個單位得故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2)當年產(chǎn)量為13萬件時,王先生在電子產(chǎn)品的配件的生產(chǎn)中所獲得的年利潤最大,年利潤的最大值為6萬元.【解析】(1)根據(jù)題意列出和時的解析式即可;(2)分別求和時的最大利潤,比較兩個利潤的大小即可.【小問1詳解】∵每件商品售價為4元,則萬件商品銷售收入為萬元,當時,;當時,.∴;【小問2詳解】若,則.當時,取得最大值萬元.若,則,當且僅當,即時,取得最大值6萬元.∵,∴當年產(chǎn)量為13萬件時,王先生在電子產(chǎn)品的配件的生產(chǎn)中所獲得的年利潤最大.年利潤的最大值為6萬元.17、(1);(2)【解析】(1)先化簡集合A和集合B,再求.(2)由A得再因為得到,即得.【詳解】(1)當時,有得,由知得或,故.(2)由知得,因為,所以,得.【點睛】本題主要考查集合的化簡運算,考查集合中的參數(shù)問題,考查絕對值不等式和對數(shù)不等式的解法,意在考查學生對這些知識的掌握水平和分析推理能力.18、(1)周期為;(2)遞增區(qū)間是:,;遞減區(qū)間是:[k+,k+],;(3)簡圖如圖所示,取值范圍是.【解析】(1)利用正弦函數(shù)的周期公式即可計算得解;(2)利用正弦函數(shù)的單調(diào)性解不等式即可求解;(3)利用五點作圖法即可畫出函數(shù)在一個周期內(nèi)的圖象,根據(jù)正弦函數(shù)的性質(zhì)即可求解取值范圍【詳解】(1)因為函數(shù),所以周期;(2)由,,得,.函數(shù)的單調(diào)遞增區(qū)間是:,.函數(shù)的單調(diào)遞減區(qū)間是:[k+,k+],;(3)函數(shù)即再簡圖如圖所示.因為所以函數(shù)在區(qū)間上的取值范圍是.19、(1)函數(shù)為“局部中心函數(shù)”,理由見解析;(2).【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉(zhuǎn)化為方程有解,再利用整體思路得出結(jié)果.【詳解】解:(1)由題意,(),所以,,當時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉(zhuǎn)化為在上有解,設(shè)函數(shù),當時,在上有解,即,解得:;當時,則需要滿足才能使在上有解,解得:,綜上:,即實數(shù)m的取值范圍.20、(1);(2)【解析】根據(jù),是夾角為的兩個單位向量即可求出,然后利用向量的模的公式和數(shù)量積公式即可求得結(jié)果;根據(jù)即可求出向量夾角的余弦值【詳解】是夾角為的兩個單位向量;;,,;;【點睛】本題考查向量模的公式,考查向量數(shù)量積計算公式以及向量夾角的余弦公式,屬于基礎(chǔ)題21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財經(jīng)大學《環(huán)境衛(wèi)生學2》2023-2024學年第一學期期末試卷
- 2025年安徽建筑安全員《B證》考試題庫及答案
- 2025貴州建筑安全員-A證考試題庫及答案
- 廣州珠江職業(yè)技術(shù)學院《素描1》2023-2024學年第一學期期末試卷
- 2025遼寧建筑安全員C證考試題庫
- 2025年陜西省安全員A證考試題庫
- 2025山東省建筑安全員B證考試題庫附答案
- 2025黑龍江省安全員A證考試題庫
- 2025年湖北省建筑安全員《B證》考試題庫及答案
- 2025青海省建筑安全員知識題庫附答案
- 2024年未成年子女房產(chǎn)贈與協(xié)議
- 2024-2030年中國共模電感環(huán)形鐵芯行業(yè)發(fā)展狀況規(guī)劃分析報告
- 眼視光學理論和方法知到智慧樹章節(jié)測試課后答案2024年秋山東中醫(yī)藥大學
- 節(jié)約集約建設(shè)用地標準 DG-TJ08-2422-2023
- 《氮化硅陶瓷》課件
- 山東省濟南市歷城區(qū)2024-2025學年二年級上學期期末數(shù)學模擬檢測卷(含答案)
- 叉車維護維修合同
- 2024年財務(wù)部年度工作總結(jié)(7篇)
- 2024年度醫(yī)療美容服務(wù)合作合同3篇
- 心衰病的中醫(yī)治療
- 水利工程勞務(wù)施工方案
評論
0/150
提交評論