山東省費縣2022年高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
山東省費縣2022年高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
山東省費縣2022年高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
山東省費縣2022年高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
山東省費縣2022年高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.,,則p是q的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.下列關(guān)于函數(shù),的單調(diào)性的敘述,正確的是()A.在上是增函數(shù),在上是減函數(shù)B.在和上是增函數(shù),在上是減函數(shù)C.在上是增函數(shù),在上是減函數(shù)D.在上是增函數(shù),在和上是減函數(shù)3.已知函數(shù)(,且)的圖象恒過點P,若角的終邊經(jīng)過點P,則()A. B.C. D.4.已知函數(shù)f(x)(x∈R)滿足f(2-x)=-f(x),若函數(shù)y=與f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),則x1+x2+x3+…+xm的值為()A.4m B.2mC.m D.05.將函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則下列說法正確的是()A.圖象的一條對稱軸為 B.在上單調(diào)遞增C.在上的最大值為1 D.的一個零點為6.已知定義在上的函數(shù)滿足:,且,,則方程在區(qū)間上的所有實根之和為A.-5 B.-6C.-7 D.-87.已知,為銳角,,,則的值為()A. B.C. D.8.某校高一年級有180名男生,150名女生,學(xué)校想了解高一學(xué)生對文史類課程的看法,用分層抽樣的方式,從高一年級學(xué)生中抽取若干人進(jìn)行訪談.已知在女生中抽取了30人,則在男生中抽取了()A.18人 B.36人C.45人 D.60人9.“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要10.函數(shù)在區(qū)間上的最大值是A.1 B.C. D.1+11.函數(shù)的部分圖象大致是()A. B.C. D.12.已知,則的最小值為().A.9 B.C.5 D.二、填空題(本大題共4小題,共20分)13.設(shè)是定義在區(qū)間上的嚴(yán)格增函數(shù).若,則a的取值范圍是______14.的值是__________15.直線與直線關(guān)于點對稱,則直線方程為______.16.已知向量,若,則實數(shù)的值為______三、解答題(本大題共6小題,共70分)17.某校在2013年的自主招生考試成績中隨機(jī)抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格(1)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;(2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù)與平均數(shù);(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?18.假設(shè)你有一筆資金用于投資,年后的投資回報總利潤為萬元,現(xiàn)有兩種投資方案的模型供你選擇.(1)請在下圖中畫出的圖像;(2)從總利潤的角度思考,請你選擇投資方案模型.19.如圖,在同一平面上,已知等腰直角三角形紙片的腰長為3,正方形紙片的邊長為1,其中B、C、D三點在同一水平線上依次排列.把正方形紙片向左平移a個單位,.設(shè)兩張紙片重疊部分的面積為S.(1)求關(guān)于a的函數(shù)解析式;(2)若,求a的值.20.考慮到高速公路行車安全需要,一般要求高速公路的車速(公里/小時)控制在范圍內(nèi).已知汽車以公里/小時的速度在高速公路上勻速行駛時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),不同型號汽車值不同,且滿足.(1)若某型號汽車以120公里/小時的速度行駛時,每小時的油耗為升,欲使這種型號的汽車每小時的油耗不超過9升,求車速的取值范圍;(2)求不同型號汽車行駛100千米的油耗的最小值.21.已知函數(shù).(1)若在上的最大值為,求的值;(2)若為的零點,求證:.22.如圖,邊長為的正方形所在平面與正三角形所在平面互相垂直,分別為的中點.(1)求四棱錐的體積;(2)求證:平面;(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結(jié)論;若不存在,請說明理由.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:因為,,所以由不能推出,由能推出,故是的必要不充分條件故選:B2、D【解析】根據(jù)正弦函數(shù)的單調(diào)性即可求解【詳解】解:因為的單調(diào)遞增區(qū)間為,,,單調(diào)遞減區(qū)間為,,,又,,所以函數(shù)在,上是增函數(shù),在,和,上是減函數(shù),故選:D3、A【解析】由題可得點,再利用三角函數(shù)的定義即求.【詳解】令,則,所以函數(shù)(,且)的圖象恒過點,又角的終邊經(jīng)過點,所以,故選:A.4、C【解析】由條件可得,即有關(guān)于點對稱,又的圖象關(guān)于點對稱,即有,為交點,即有,也為交點,計算即可得到所求和【詳解】解:函數(shù)滿足,即為,可得關(guān)于點對稱,函數(shù)的圖象關(guān)于點對稱,即有,為交點,即有,也為交點,,為交點,即有,也為交點,則有.故選.【點睛】本題考查抽象函數(shù)的求和及對稱性的運用,屬于中檔題.5、B【解析】對選項A,,即可判斷A錯誤;對選項B,求出的單調(diào)區(qū)間即可判斷B正確;對選項C,求出在的最大值即可判斷C錯誤;對選項D,根據(jù),即可判斷D錯誤.詳解】,.對選項A,因為,故A錯誤;對選項B,因為,.解得,.當(dāng)時,函數(shù)的增區(qū)間為,所以在上單調(diào)遞增,故B正確;對選項C,因為,所以,所以,,,故錯誤;對選項D,,故D錯誤.故選:B6、C【解析】由題意知,函數(shù)的周期為2,則函數(shù)在區(qū)間上的圖像如下圖所示:由圖形可知函數(shù)在區(qū)間上的交點為,易知點的橫坐標(biāo)為-3,若設(shè)的橫坐標(biāo)為,則點的橫坐標(biāo)為,所以方程在區(qū)間上的所有實數(shù)根之和為.考點:分段函數(shù)及基本函數(shù)的性質(zhì).7、A【解析】,根據(jù)正弦的差角公式展開計算即可.【詳解】∵,,∴,又∵,∴,又,∴,∴,,∴故選:A.8、B【解析】先計算出抽樣比,即可計算出男生中抽取了多少人.【詳解】解:女生一共有150名女生抽取了30人,故抽樣比為:,抽取的男生人數(shù)為:.故選:B.9、B【解析】根據(jù)充分條件和必要條件的概念,結(jié)合題意,即可得到結(jié)果.【詳解】因為,所以“”是“”的必要不充分條件.故選:B.10、C【解析】由,故選C.11、A【解析】分析函數(shù)的奇偶性及其在上的函數(shù)值符號,結(jié)合排除法可得出合適的選項.【詳解】函數(shù)的定義域為,,函數(shù)為偶函數(shù),排除BD選項,當(dāng)時,,則,排除C選項.故選:A.12、B【解析】首先將所給的不等式進(jìn)行恒等變形,然后結(jié)合均值不等式即可求得其最小值,注意等號成立的條件.【詳解】.,且,,當(dāng)且僅當(dāng),即時,取得最小值2.的最小值為.故選B.【點睛】本題主要考查基本不等式求最值的方法,代數(shù)式的變形技巧,屬于中等題.二、填空題(本大題共4小題,共20分)13、.【解析】根據(jù)題意,列出不等式組,即可求解.【詳解】由題意,函數(shù)是定義在區(qū)間上的嚴(yán)格增函數(shù),因為,可得,解得,所以實數(shù)a的取值范圍是.故答案為:.14、【解析】分析:利用對數(shù)運算的性質(zhì)和運算法則,即可求解結(jié)果.詳解:由.點睛:本題主要考查了對數(shù)的運算,其中熟記對數(shù)的運算法則和對數(shù)的運算性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力.15、【解析】由題意可知,直線應(yīng)與直線平行,可設(shè)直線方程為,由于兩條至直線關(guān)于點對稱,可通過計算點分別到兩條直線的距離,通過距離相等,即可求解出,完成方程的求解.【詳解】解:由題意可設(shè)直線的方程為,則,解得或舍去,故直線的方程為故答案為:.16、;【解析】由題意得三、解答題(本大題共6小題,共70分)17、(1)第4組的頻率為0.2,作圖見解析(2)樣本中位數(shù)的估計值為,平均數(shù)為87.25(3)0.9【解析】(1)利用頻率和為1,計算可得答案,計算可得第四個矩形的高度為0.2÷5=0.04,由此作圖即可;(2)設(shè)樣本的中位數(shù)為x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位數(shù),根據(jù)77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10計算即可得到平均數(shù);(3)通過列舉法可得所有基本事件的總數(shù)以及至少有一人是“優(yōu)秀”的總數(shù),再利用古典概型概率公式計算可得.【詳解】(1)其它組的頻率為(0.01+0.07+0.06+0.02)×5=0.8,所以第4組的頻率為0.2,頻率分布圖如圖:(2)設(shè)樣本的中位數(shù)為x,則5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴樣本中位數(shù)的估計值為,平均數(shù)為77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依題意良好的人數(shù)為40×0.4=16人,優(yōu)秀的人數(shù)為40×0.6=24人優(yōu)秀與良好的人數(shù)比為3:2,所以采用分層抽樣的方法抽取的5人中有優(yōu)秀3人,良好2人,記“從這5人中選2人至少有1人是優(yōu)秀”為事件M,將考試成績優(yōu)秀的三名學(xué)生記為A,B,C,考試成績良好的兩名學(xué)生記為a,b,從這5人中任選2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10個基本事件,事件M含的情況是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9個,所以P(M)0.9【點睛】本題考查了頻率分布直方圖,考查了由頻率分布直方圖計算中位數(shù)和平均數(shù),考查了古典概型的概率公式,屬于中檔題.18、(1)作圖見解析(2)答案不唯一,具體見解析【解析】(1)根據(jù)指數(shù)函數(shù)描出幾個特殊點,用平滑的曲線連接即可.(2)結(jié)合(1)中的圖像,分析可得對于不同的值進(jìn)行討論即可求解.【詳解】(1)(2)由圖可知當(dāng)時,;當(dāng)時,當(dāng)時,;當(dāng)時,;當(dāng)時,;所以當(dāng)資金投資2年或4年時兩種方案的回報總利潤相同;當(dāng)資金投資2年以內(nèi)或4年以上,按照模型回報總利潤為最大;當(dāng)資金投資2年以上到4年以內(nèi),按照模型回報總利潤最大.【點睛】本題考查了指數(shù)函數(shù)、二次函數(shù)模型的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2)或.【解析】(1)討論、、分別求對應(yīng)的,進(jìn)而寫出函數(shù)解析式的分段形式.(2)根據(jù)(1)所得解析式,將代入求a值即可.【小問1詳解】如下圖,延長到上的,又,則,∴,當(dāng)時,;當(dāng)時,;當(dāng)時,.綜上,.小問2詳解】由(1)知:在上,;在上,,整理得,解得(舍)或.綜上,或時,.20、(1);(2)當(dāng)時,該汽車行駛100千米的油耗的最小值為升;當(dāng)時,該汽車行駛100千米的油耗的最小值為升.【解析】(1)根據(jù)題意,可知當(dāng)時,求出的值,結(jié)合條件得出,再結(jié)合,即可得出車速的取值范圍;(2)設(shè)該汽車行駛100千米的油耗為升,得出關(guān)于與的函數(shù)關(guān)系式,通過換元令,則,得出與的二次函數(shù),再根據(jù)二次函數(shù)的圖象和性質(zhì)求出的最小值,即可得出不同型號汽車行駛100千米的油耗的最小值.【小問1詳解】解:由題意可知,當(dāng)時,,解得:,由,即,解得:,因為要求高速公路的車速(公里/小時)控制在范圍內(nèi),即,所以,故汽車每小時的油耗不超過9升,求車速的取值范圍.【小問2詳解】解:設(shè)該汽車行駛100千米的油耗為升,則,令,則,所以,,可得對稱軸為,由,可得,當(dāng)時,即時,則當(dāng)時,;當(dāng),即時,則當(dāng)時,;綜上所述,當(dāng)時,該汽車行駛100千米的油耗的最小值為升;當(dāng)時,該汽車行駛100千米的油耗的最小值為升.21、(1)2;(2)詳見解析.【解析】(1)易知函數(shù)和在上遞增,從而在上遞增,根據(jù)在上的最大值為求解.(2)根據(jù)為的零點,得到,由零點存在定理知,然后利用指數(shù)和對數(shù)互化,將問題轉(zhuǎn)化為,利用基本不等式證明.【詳解】(1)因為函數(shù)和在上遞增,所以在上遞增,又因為在上的最大值為,所以,解得;(2)因為為的零點,所以,即,又當(dāng)時,,當(dāng)時,,所以,因為,等價于,等價于,等價于,而,令,所以,所以成立,所以.【點睛】關(guān)鍵點點睛:本題關(guān)鍵是由指數(shù)和對數(shù)的互化結(jié)合,將問題轉(zhuǎn)化為證成22、(1);(2)證明見解析;(3)存在,為中點,證明見解析.【解析】(1)由等腰三角形三線合一性質(zhì)和面面垂直性質(zhì)定理可證得平面,由棱錐體積公式可求得結(jié)果;(2)連結(jié)交于點,由三角形中位線性質(zhì)可證得,由線面平行判定定理可得到結(jié)論;(3)當(dāng)為中點時,由正方形的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論